Skip Navigation LinksHome > March 2012 - Volume 177 - Issue 3 > Pedotransfer Functions for Estimating Soil Bulk Density in C...
Soil Science:
doi: 10.1097/SS.0b013e31823fd493
Technical Article

Pedotransfer Functions for Estimating Soil Bulk Density in China

Han, Guang-Zhong1,2; Zhang, Gan-Lin1,2; Gong, Zi-Tong1; Wang, Gai-Fen1,2

Collapse Box


Abstract: Soil bulk density (BD), which can be measured by several labor-intensive procedures, is frequently missing from soil databases. However, it is an essential parameter in many calculations and models, and pedotransfer functions (PTFs) can be developed to estimate it. In this article, the predictive accuracy of 19 published PTFs was evaluated using soil data sets from China. In addition, exploratory stepwise regression models were proposed and validated. The data used in model development were legacy data from various sources and were divided randomly into two sets: a training set for model development with 75% of the data and a validation set for model validation with 25% of the data. The results show that existing models, developed by Alexander (1980) (P1), Manrique and Jones (1991) (P7), and Périé and Ouimet (2008) (N6), respectively, produced relatively accurate predictions. However, the first two models were inappropriate for soils containing a large amount of soil organic carbon. The exploratory model (Model 1) indicated that soil organic matter, organic matter0.5, total nitrogen, and clay were the four most important factors in BD prediction. The exploratory model and its simplified version (Model 3) had higher prediction accuracies than previously published PTFs. The results show that parameters tailored to the current data improved prediction accuracy for the nonlinear model (Model 2). Compared with the exploratory model (Model 1), its simplified version and the nonlinear model, with only one variable, had good prediction accuracies as demonstrated by validation.

© 2012 Lippincott Williams & Wilkins, Inc.


Article Tools


Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.