Soil Science

Skip Navigation LinksHome > August 2011 - Volume 176 - Issue 8 > Colloid and Phosphorus Leaching From Undisturbed Soil Cores...
Soil Science:
doi: 10.1097/SS.0b013e31822391bc
Soils Issues

Colloid and Phosphorus Leaching From Undisturbed Soil Cores Sampled Along a Natural Clay Gradient

Vendelboe, Anders Lindblad1; Moldrup, Per2; Heckrath, Goswin1; Jin, Yan3; de Jonge, Lis Wollesen1

Collapse Box


The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kg−1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus followed by lower and stable colloid and phosphorus concentrations. The mass of particles leached at first flush was independent of clay content and was attributed to the instant release of particles associated with the macropore walls and released upon contact with flowing water. Below a clay content of ∼0.15 kg kg−1, the later leaching (after the first flush) of particles was independent of the clay content. Above this threshold, there was a positive relationship between the mass of leached particles after the first flush and the clay content. Particle release after the first flush was linearly correlated to the accumulated outflow and was described as a diffusion controlled process, using √(accumulated outflow). The mass of leached particles was positively correlated to the clay content as well as to water-dispersible colloids. Particulate phosphorus (P) was linearly correlated to concentration of leached particles and accounted for ∼70% of the total mass of leached P. Approximately 50% of particulate P was associated with the first flush. The P concentration on leached particles was negatively correlated to clay content (R2 = 0.89) and followed the same trend as the P concentration on soil clay and the so-called degree of P saturation (oxalate-extractable P on iron and aluminum minerals). Because higher colloidal P concentration was countered by a lower colloidal leaching, the total amount of leached P stayed remarkably constant along the natural clay gradient.

© 2011 Lippincott Williams & Wilkins, Inc.




Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.