Skip Navigation LinksHome > August 2014 - Volume 35 - Issue 7 > A Polymer-Based Multichannel Cochlear Electrode Array
Otology & Neurotology:
doi: 10.1097/MAO.0000000000000292
Cochlear Implants

A Polymer-Based Multichannel Cochlear Electrode Array

Min, Kyou Sik*; Oh, Seung Ha†‡; Park, Min-Hyun§; Jeong, Joonsoo*; Kim, Sung June*

Collapse Box

Abstract

Objective

Compared with conventional cochlear electrode arrays, which are hand assembled and wire-based, polymer-based implants have several advantages. They are very precise, and their fabrication is inexpensive because of the use of thin-film processes. In the present study, a cochlear electrode array based on a high-performance liquid crystal polymer material is devised. Furthermore, the device is encapsulated in silicone elastomer.

Methods

The fabrication steps introduced here include thin-film processes with liquid crystal polymer (LCP) films and customized self-aligning molding processes for the electrode array. To assess the feasibility of the proposed electrode array, the charge storage capacitance and impedance were measured using a potentiostat. Vertical and horizontal deflection forces were measured using a customized fixture and a force sensor. Insertion and extraction forces were also measured using a transparent human cochlear plastic model, and five cases involving human temporal insertion trials were undertaken to assess the level of safety during the insertion process.

Results

The charge storage capacity and impedance at 1 kHz were 33.26 mC/cm2 and 1.02 kΩ, respectively. Likewise, the vertical force and horizontal force of the electrode array were 3.15 g and 1.07 g. The insertion force into a transparent plastic cochlear model with displacement of 8 mm from a round window was 8.2 mN, and the maximum extraction force was 110.4 mN. Two cases of human temporal bone insertion showed no observable trauma, whereas 3 cases showed a rupture of the basilar membrane.

Conclusion

An LCP-based intracochlear electrode array was fabricated, and its electrical and mechanical properties were found to be suitable for clinical use.

Copyright © 2014, Otology & Neurotology, Inc.

Follow Us

 

 

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.