Share this article on:

Associations between Hyperopia and Other Vision and Refractive Error Characteristics

Kulp, Marjean Taylor*; Ying, Gui-shuang; Huang, Jiayan; Maguire, Maureen; Quinn, Graham§; Ciner, Elise B.; Cyert, Lynn A.**; Orel-Bixler, Deborah A.††; Moore, Bruce D.; for the VIP Study Group

doi: 10.1097/OPX.0000000000000223
Original Articles

Purpose: To investigate the association of hyperopia greater than +3.25 diopters (D) with amblyopia, strabismus, anisometropia, astigmatism, and reduced stereoacuity in preschoolers.

Methods: Three- to five-year-old Head Start preschoolers (N = 4040) underwent vision examination including monocular visual acuity (VA), cover testing, and cycloplegic refraction during the Vision in Preschoolers Study. Visual acuity was tested with habitual correction and was retested with full cycloplegic correction when VA was reduced below age norms in the presence of significant refractive error. Stereoacuity testing (Stereo Smile II) was performed on 2898 children during study years 2 and 3. Hyperopia was classified into three levels of severity (based on the most positive meridian on cycloplegic refraction): group 1: greater than or equal to +5.00 D, group 2: greater than +3.25 D to less than +5.00 D with interocular difference in spherical equivalent greater than or equal to 0.50 D, and group 3: greater than +3.25 D to less than +5.00 D with interocular difference in spherical equivalent less than 0.50 D. “Without” hyperopia was defined as refractive error of +3.25 D or less in the most positive meridian in both eyes. Standard definitions were applied for amblyopia, strabismus, anisometropia, and astigmatism.

Results: Relative to children without hyperopia, children with hyperopia greater than +3.25 D (n = 472, groups 1, 2, and 3) had a higher proportion of amblyopia (34.5 vs. 2.8%, p < 0.0001) and strabismus (17.0 vs. 2.2%, p < 0.0001). More severe levels of hyperopia were associated with higher proportions of amblyopia (51.5% in group 1 vs. 13.2% in group 3) and strabismus (32.9% in group 1 vs. 8.4% in group 3; trend p < 0.0001 for both). The presence of hyperopia greater than +3.25 D was also associated with a higher proportion of anisometropia (26.9 vs. 5.1%, p < 0.0001) and astigmatism (29.4 vs. 10.3%, p < 0.0001). Median stereoacuity of nonstrabismic, nonamblyopic children with hyperopia (n = 206) (120 arcsec) was worse than that of children without hyperopia (60 arcsec) (p < 0.0001), and more severe levels of hyperopia were associated with worse stereoacuity (480 arcsec for group 1 and 120 arcsec for groups 2 and 3, p < 0.0001).

Conclusions: The presence and magnitude of hyperopia among preschoolers were associated with higher proportions of amblyopia, strabismus, anisometropia, and astigmatism and with worse stereoacuity even among nonstrabismic, nonamblyopic children.








The Ohio State University College of Optometry, Columbus, Ohio (MTK); University of Pennsylvania, Philadelphia, Pennsylvania (G-sY, JH, MM); Children’s Hospital of Pennsylvania, Philadelphia, Pennsylvania (GQ); Pennsylvania College of Optometry at Salus University, Philadelphia, Pennsylvania (EBC); Northeastern State University Oklahoma College of Optometry, Tahlequah, Oklahoma (LAC); University of California, Berkeley School of Optometry, Berkeley, California (DAO-B); New England College of Optometry, Boston, Massachusetts (BDM).

Marjean Taylor Kulp The Ohio State University College of Optometry 338 W Tenth Ave Columbus, OH 43210 e-mail:

© 2014 American Academy of Optometry