Optometry & Vision Science

Skip Navigation LinksHome > February 2013 - Volume 90 - Issue 2 > Fixation Stability and Scotoma Mapping for Patients With Low...
Optometry & Vision Science:
doi: 10.1097/OPX.0b013e31827cda72
Original Articles

Fixation Stability and Scotoma Mapping for Patients With Low Vision

Elsner, Ann E.*; Petrig, Benno L.; Papay, Joel A.; Kollbaum, Elli J.§; Clark, Christopher A.; Muller, Matthew S.**

Collapse Box

Abstract

Purpose: To develop a simplified device that performs fundus perimetry techniques such as fixation mapping and kinetic perimetry.

Methods: We added visual stimulation to a near-infrared retinal imager, the laser scanning digital camera (LSDC). This device uses slit scanning illumination combined with a two-dimensional CMOS (complementary metal oxide semiconductor) detector, with continuous viewing of the retina. The CMOS readout was synchronized with the slit scanning, thereby serving as a confocal aperture to reduce stray light in retinal images. A series of retinal images of 36 degrees was automatically aligned to provide data for fixation maps and quantification of fixation stability. The LSDC and alignment techniques also provided fundus viewing with retinal location correction for scotoma mapping.

Results: First, fixation mapping was readily performed in patients with central scotoma or amblyopia. The automatic alignment algorithm allowed quantification of fixation stability in patients with macular pathologies that did not cause scotoma. Second, fixation stability was rapidly and quantitatively assessed by the automatic registration of the series of retina images. There was no significant difference in the fixation stability with automatic versus manual alignment. Kinetic perimetry demonstrated that fundus imaging helped reduce the variability of perimetric data by identifying and preventing false-positives caused by eye motion. We found that the size of the blind spot was significantly larger for dark targets on brighter backgrounds than when the contrast was reversed (p < 0.045). This is consistent with incremental targets being detected partially or wholly because of scattered light falling on more sensitive retinal locations.

Conclusions: Fundus perimetry with the LSDC allows for a wide range of fixation and perimetry tasks.

© 2013 American Academy of Optometry

Login

Article Tools

Share

Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.