You could be reading the full-text of this article now if you...

If you have access to this article through your institution,
you can view this article in

Imposed Anisometropia, Accommodation, and Regulation of Refractive State

Troilo, David*; Totonelly, Kristen†; Harb, Elise‡

Optometry & Vision Science:
doi: 10.1097/OPX.0b013e318194072e
Original Article
Abstract

Purpose. To determine the effects of imposed anisometropic retinal defocus on accommodation, ocular growth, and refractive state changes in marmosets.

Methods. Marmosets were raised with extended-wear soft contact lenses for an average duration of 10 weeks beginning at an average age of 76 d. Experimental animals wore either a positive or negative power contact lens over one eye and a plano lens or no lens over the other. Another group wore binocular lenses of equal magnitude but opposite sign. Untreated marmosets served as controls and three wore plano lenses monocularly. Cycloplegic refractive state, corneal curvature, and vitreous chamber depth were measured before, during, and after the period of lens wear. To investigate the accommodative response, the effective refractive state was measured through each anisometropic condition at varying accommodative stimuli positions using an infrared refractometer.

Results. Eye growth and refractive state are significantly correlated with the sign and power of the contact lens worn. The eyes of marmosets reared with monocular negative power lenses had longer vitreous chambers and were myopic relative to contralateral control eyes (p < 0.01). Monocular positive power lenses produced a significant reduction in vitreous chamber depth and hyperopia relative to the contralateral control eyes (p < 0.05). In marmosets reared binocularly with lenses of opposite sign, we found larger interocular differences in vitreous chamber depths and refractive state (p < 0.001). Accommodation influences the defocus experienced through the lenses, however, the mean effective refractive state was still hyperopia in the negative-lens–treated eyes and myopia in the positive-lens–treated eyes.

Conclusions. Imposed anisometropia effectively alters marmoset eye growth and refractive state to compensate for the imposed defocus. The response to imposed hyperopia is larger and faster than the response to imposed myopia. The pattern of accommodation under imposed anisometropia produces effective refractive states that are consistent with the changes in eye growth and refractive state observed.

Author Information

*PhD

BA

OD, MS, FAAO

State University of New York, State College of Optometry, New York, New York (DT, KT), and The New England College of Optometry, Boston, Massachusetts (EH).

Received October 15, 2008; accepted October 31, 2008.

© 2009 American Academy of Optometry