Optometry & Vision Science

Skip Navigation LinksHome > January 2003 - Volume 80 - Issue 1 > A Method to Predict Refractive Errors from Wave Aberration D...
Optometry & Vision Science:
Articles: Original Article

A Method to Predict Refractive Errors from Wave Aberration Data


Collapse Box


We explored the impact of the eye’s higher-order aberrations on subjective refraction comparing two classes of methods for estimating refractive state, one based directly on the wave aberration defined in the pupil plane and another based on the retinal image plane. The method defined in the pupil plane chose the sphere and cylinder that either minimized the wave aberration root mean square or minimized the sum of all the spherical and cylindrical components in the wave aberration. The method defined in the image plane chose the sphere and cylinder that optimized an image-quality metric such as the Strehl intensity ratio, the entropy and the intensity variance of the point-spread function, the volume under the modulation transfer function, or the volume under the contrast-sensitivity function. All these methods were compared in a population of six eyes for which we measured both the wave aberration with a Shack-Hartmann wavefront sensor and the subjective refraction under identical conditions. Pupil plane methods predicted subjective refraction poorly. The mean absolute error of the prediction, in spherical equivalent, was about 0.5 D (range, 0.1 to 0.8 D) and increased with increases in higher-order aberrations. However, for all the retinal image plane methods, the mean error between predicted and subjective refraction was about 0.1 D (range, 0 to 0.25 D). The reliability of the method based on the image-quality optimization was further confirmed in a large population of 146 eyes. In conclusion, higher-order aberrations influence the amount of sphere and cylinder required to correct vision. The results indicate that subjective refraction can be predicted from the eye’s optics alone by optimizing computed retinal image quality.

© 2003 American Academy of Optometry


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.