Operative Neurosurgery

Skip Navigation LinksHome > June 2014 - Volume 10 - Issue 2 > Multitract Orthogonal Microelectrode Localization of the Sub...
Operative Neurosurgery:
doi: 10.1227/NEU.0000000000000295
Technique Assessment

Multitract Orthogonal Microelectrode Localization of the Subthalamic Nucleus: Description of a Novel Technique

Sweet, Jennifer A. MD*; Walter, Benjamin L. MD; Munyon, Charles MD*; Miller, Jonathan P. MD*

Collapse Box


BACKGROUND: Microelectrode recording helps surgeons accurately localize boundaries of the subthalamic nucleus (STN) and surrounding structures in deep brain stimulation.

OBJECTIVE: To describe a novel adaptation of the Ben gun device to optimize efficient mapping.

METHODS: Patients who underwent STN deep brain stimulation over a 3-year period were reviewed. For the final year, the Ben gun was rotated 45° and the target was offset 1.4 mm lateral and anterior in the plane orthogonal to the intended trajectory to allow for simultaneous parallel tracks at target, 2.8 mm anterior (localizing the front of STN), and 2.8 mm lateral (identifying the internal capsule). Before this step, the initial pass consisted of 1 to 2 tracks with the frame center targeted to STN. The primary outcome measure was the number of passes required for accurate localization of the nucleus and boundaries.

RESULTS: Eighty-three electrodes were implanted in 45 patients (mean age, 62; range, 37-78 years), of which 29 electrodes were placed by the use of the new technique. One electrode (4%) required more than 1 pass using the new technique compared with 36 (67%) using the older technique (P < .01). The distance from original target to final electrode position increased from 0.67 ± 0.13 mm to 1.06 ± 0.15 mm (P < .05) with a greater tendency to move the final electrode position posteriorly. There was no statistically significant difference in benefit from neurostimulation.

CONCLUSION: This technique facilitates reliable localization of the STN with fewer passes, possibly decreasing the risks associated with more passes and longer duration of surgery.

ABBREVIATIONS: DBS, deep brain stimulators

MER, microelectrode recording

PD, Parkinson disease

STN, subthalamic nucleus

© 2014 by Lippincott Williams & Wilkins, Inc.

You currently do not have access to this article.

You may need to:

Note: If your society membership provides for full-access to this article, you may need to login on your society’s web site first.


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.