Skip Navigation LinksHome > December 2009 - Volume 30 - Issue 12 > Imaging a pancreatic carcinoma xenograft model with 11C-acet...
Nuclear Medicine Communications:
doi: 10.1097/MNM.0b013e328330adfc
Original Articles

Imaging a pancreatic carcinoma xenograft model with 11C-acetate: a comparison study with 18F-FDG

Zhao, Chunleia b c d; Chen, Zhanhonge; Ye, Xiaojuana b c d; Zhang, Yinga b c d; Zhan, Hongweia b c d; Aburano, Tamiof; Tian, Meig; Zhang, Honga b c d

Collapse Box


Purpose: Pancreatic carcinoma is a malignant tumor with poor prognosis and its early detection is still a clinical problem. The aim of this study was to evaluate the efficacy of carbon-11-labeled acetate (11C-acetate)-positron emission tomography (PET) for the detection of pancreatic carcinoma in a BxPC-3 human pancreatic carcinoma xenograft-bearing immunodeficiency BALB/c-nu nude mice model.

Methods: Whole-body 11C-acetate and fluorine-18-labeled fluorodeoxyglucose (18F-FDG) micro-PET imaging were performed weekly on BxPC-3 human pancreatic carcinoma xenograft-bearing BALB/c-nu nude mice from the 2nd week after tumor cell inoculation. Regions of interest method and tumor-to-nontumor ratio (T/N ratio) were used for semiquantitative evaluation. Tumor proliferation was evaluated by immunohistochemistry analysis of proliferating cell nuclear antigen.

Results: Radiotracer accumulation in the tumor xenografts could be detected 1 week earlier in 11C-acetate-PET than that in 18F-FDG-PET. Peak T/N ratio was obtained at the 5th week in 11C-acetate-PET and at the 4th week in 18F-FDG-PET. T/N ratio in 11C-acetate-PET was lower than that in 18F-FDG-PET during the same period. By visual evaluation, tumor xenografts were more easily observed in 11C-acetate-PET than in 18F-FDG-PET in most of the mice. Linear correlation analysis indicated T/N ratios in 11C-acetate-PET had no significant correlation with those in 18F-FDG-PET. Tumor size, T/N ratio in 11C-acetate-PET, and T/N ratio in 18F-FDG-PET were not found to be significantly correlated with tumor proliferating cell nuclear antigen expression.

Conclusion: 11C-acetate-PET imaging can be used for the detection of pancreatic carcinoma. In the early stage of tumor growth, 11C-acetate-PET has better detectability than that of 18F-FDG-PET.

© 2009 Lippincott Williams & Wilkins, Inc.


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.