Institutional members access full text with Ovid®

Share this article on:

A Resisted Sprint Improves Rate Of Force Development During A 20-Meter Sprint In Athletes.

Mangine, Gerald; Huet, Kevin; Williamson, Cassie; Bechke, Emily; Serafini, Paul; Bender, David; Hudy, John; Townsend, Jeremy
Journal of Strength & Conditioning Research: Post Acceptance: June 03, 2017
doi: 10.1519/JSC.0000000000002030
Original Research: PDF Only

This study examined the effect of a resisted sprint on 20-m sprinting kinetics. Following a standardized warm-up, twenty-three (male = 10, female = 13) division-1 basketball players completed three maximal 20-m sprint trials while tethered to a robotic resistance device. The first sprint (S1) used the minimal, necessary resistance (1-kg) to detect peak (PK) and average (AVG) sprinting power (P), velocity (V) and force (F); peak rate of force production (RFD) was also calculated. The second sprint (S2) was completed against a load equal to approximately 5% of the athlete's body mass. Minimal resistance (1-kg) was again used for the final sprint (S3). Approximately 4-9 minutes of rest was allotted between each sprint. Separate analyses of variance with repeated measures revealed significant (p < 0.05) main effects for all sprinting kinetic measures except VPK (p = 0.067). Compared to S1, increased (p < 0.006) 20-m sprint time (3.4 +/- 4.9%), PAVG (115.9 +/- 33.2%), PPK (65.7 +/- 23.7%), FAVG (134.1 +/- 34.5%), FPK (65.3 +/- 16.2%), and RFD (71.8 +/- 22.2%) along with decreased (p < 0.001) stride length (-21 +/- 15.3%) and VAVG (-6.6 +/- 4.6%) were observed during S2. During S3, only RFD was improved (5.2 +/- 7.1%, p < 0.001) compared to S1. In conclusion, completing a short, resisted-sprint with a load equating to 5% of body mass prior to a short sprint (~20-meters) does not appear to affect sprinting time or kinetics. However, it does appear to enhance rate of force production.

Copyright (C) 2017 by the National Strength & Conditioning Association.