Resting Heart Rate Variability Among Professional Baseball Starting Pitchers

Cornell, David J.; Paxson, Jeffrey L.; Caplinger, Roger A.; Seligman, Joshua R.; Davis, Nicholas A.; Ebersole, Kyle T.

Journal of Strength & Conditioning Research: March 2017 - Volume 31 - Issue 3 - p 575–581
doi: 10.1519/JSC.0000000000001538
Original Research

Abstract: Cornell, DJ, Paxson, JL, Caplinger, RA, Seligman, JR, Davis, NA, and Ebersole, KT. Resting heart rate variability among professional baseball starting pitchers. J Strength Cond Res 31(3): 575–581, 2017—The purpose of this study was to examine the changes in resting heart rate variability (HRV) across a 5-day pitching rotation schedule among professional baseball starting pitchers. The HRV data were collected daily among 8 Single-A level professional baseball starting pitchers (mean ± SD, age = 21.9 ± 1.3 years; height = 185.4 ± 3.6 cm; weight = 85.2 ± 7.5 kg) throughout the entire baseball season with the participant quietly lying supine for 10 minutes. The HRV was quantified by calculating the natural log of the square root of the mean sum of the squared differences (lnRMSSD) during the middle 5 minutes of each R-R series data file. A split-plot repeated-measures analysis of variance was used to examine the influence of pitching rotation day on resting lnRMSSD. A statistically significant main effect of rotation day was identified (F4,706 = 3.139, p = 0.029). Follow-up pairwise analyses indicated that resting lnRMSSD on day 2 was significantly (p ≤ 0.05) lower than all other rotation days. In addition, a statistically significant main effect of pitcher was also identified (F7,706 = 83.388, p < 0.001). These results suggest that professional baseball starting pitchers display altered autonomic nervous system function 1 day after completing a normally scheduled start, as day 2 resting HRV was significantly lower than all other rotation days. In addition, the season average resting lnRMSSD varied among participants, implying that single-subject analysis of resting measures of HRV may be more appropriate when monitoring cumulative workload among this cohort population of athletes.

1Human Performance & Sport Physiology Laboratory, Integrative Health Care & Performance Unit, Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and

2Milwaukee Brewers Baseball Club, Milwaukee, Wisconsin

Address correspondence to Dr. David J. Cornell, dcornell@uwm.edu.

Copyright © 2017 by the National Strength & Conditioning Association.