Skip Navigation LinksHome > July 2014 - Volume 28 - Issue 7 > Speed, Force, and Power Values Produced From Nonmotorized Tr...
Journal of Strength & Conditioning Research:
doi: 10.1519/JSC.0000000000000316
Original Research

Speed, Force, and Power Values Produced From Nonmotorized Treadmill Test Are Related to Sprinting Performance

Mangine, Gerald T.; Hoffman, Jay R.; Gonzalez, Adam M.; Wells, Adam J.; Townsend, Jeremy R.; Jajtner, Adam R.; McCormack, William P.; Robinson, Edward H.; Fragala, Maren S.; Fukuda, David H.; Stout, Jeffrey R.

Collapse Box


Abstract: Mangine, GT, Hoffman, JR, Gonzalez, AM, Wells, AJ, Townsend, JR, Jajtner, AR, McCormack, WP, Robinson, EH, Fragala, MS, Fukuda, DH, and Stout, JR. Speed, force, and power values produced from nonmotorized treadmill test are related to sprinting performance. J Strength Cond Res 28(7): 1812–1819, 2014—The relationships between 30-m sprint time and performance on a nonmotorized treadmill (TM) test and a vertical jump test were determined in this investigation. Seventy-eight physically active men and women (22.9 ± 2.7 years; 73.0 ± 14.7 kg; 170.7 ± 10.4 cm) performed a 30-second maximal sprint on the curve nonmotorized TM after 1 familiarization trial. Pearson product-moment correlation coefficients produced significant (p ≤ 0.05) moderate to very strong relationships between 30-m sprint time and body mass (r = −0.37), %fat (r = 0.79), peak power (PP) (r = −0.59), relative PP (r = −0.42), time to peak velocity (r = −0.23) and TM sprint times at 10 m (r = 0.48), 20 m (r = 0.59), 30 m (r = 0.67), 40 m (r = 0.71), and 50 m (r = 0.75). Strong relationships between 30-m sprint time and peak (r = −0.479) and mean vertical jump power (r = −0.559) were also observed. Subsequently, stepwise regression was used to produce two 30-m sprint time prediction models from TM performance (TM1: body mass + TM data and TM2: body composition + TM data) in a validation group (n = 39), and then crossvalidated against another group (n = 39). As no significant differences were observed between these groups, data were combined (n = 72) and used to create the final prediction models (TM1: r2 = 0.75, standard error of the estimate (SEE) = 0.27 seconds; TM2: r2 = 0.84, SEE = 0.22 seconds). These final movement-specific models seem to be more accurate in predicting 30-m sprint time than derived peak (r2 = 0.23, SEE = 0.48 seconds) and mean vertical jump power (r2 = 0.31, SEE = 0.45 seconds) equations. Consequently, sprinting performance on the TM can significantly predict short-distance sprint time. It, therefore, may be used to obtain movement-specific measures of sprinting force, velocity, and power in a controlled environment from a single 30-second maximal sprinting test.

Copyright © 2014 by the National Strength & Conditioning Association.



Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.