Institutional members access full text with Ovid®

Comparison of Ground Reaction Force Asymmetry in One- and Two-legged Countermovement Jumps

Benjanuvatra, Nat; Lay, Brendan S.; Alderson, Jacqueline A.; Blanksby, Brian A.

Journal of Strength & Conditioning Research: October 2013 - Volume 27 - Issue 10 - p 2700–2707
doi: 10.1519/JSC.0b013e318280d28e
Original Research

Abstract: Benjanuvatra, N, Lay, BS, Alderson, JA, and Blanksby, BA. Comparison of ground reaction force asymmetry in one- and two-legged countermovement jumps. J Strength Cond Res 27(10): 2700–2707, 2013—This study examined whether ground reaction force (GRF) asymmetry of 2-legged countermovement jumps (CMJ) is related to 1-legged CMJ asymmetry. The GRF asymmetry of a 2-legged CMJ has been suggested as a preferred test to the 1-legged CMJ for functional strength and power deficit assessment. Twenty-eight men and 30 women performed 5 trials each of a 1-legged CMJ with the right limband the left limb, and a 2-legged CMJ. Vertical GRFs were collected from each lower limb using 2 force platforms. Although several GRF variables were calculated, vertical impulse correlated most strongly with jump height in all conditions (p < 0.05), and they were used in subsequent analyses. A moderate correlation was found for impulse asymmetry between the 1- and 2-legged CMJs for women (r = 0.45, p < 0.05), but not for men (r = 0.06, p = 0.76). In contrast, cross-tabulation analyses of subjects presented with the same dominant characteristics in the 1- and 2-legged CMJs revealed poor associations for both men (Freeman-Halton exact p = 0.61) and women (Freeman-Halton exact p = 0.19). Only 11 women recorded the same dominant limb for both 1- and 2-legged CMJs. This suggests that impulse asymmetries found in the 1- and 2-legged CMJ were unrelated. As the 1-legged CMJ relies on the extension forces generated entirely from 1 limb, variations in jump heights and GRF impulses by left and right limbs separately were more indicative of functional strength differences between sides. Hence, it is recommended that the 1-legged CMJ is used when examining functional strength asymmetry in the lower limbs. In contrast, factors causing asymmetry in GRF impulses during 2-legged CMJs are more complicated and require further investigation.

School of Sport Science, Exercise and Health, The University of Western Australia, Nedlands, Western Australia, Australia

Address correspondence to Dr. Nat Benjanuvatra,

Copyright © 2013 by the National Strength & Conditioning Association.