Institutional members access full text with Ovid®

Peak Vertical Jump Power Estimations in Youths and Young Adults

Amonette, William E.1; Brown, Lee E.2; De Witt, John K.1; Dupler, Terry L.1; Tran, Tai T.2; Tufano, James J.1,2; Spiering, Barry A.2

Journal of Strength & Conditioning Research: July 2012 - Volume 26 - Issue 7 - p 1749–1755
doi: 10.1519/JSC.0b013e3182576f1e
Original Research

Abstract: Amonette, WE, Brown, LE, De Witt, JK, Dupler, TL, Tran, TT, Tufano, JJ, and Spiering, BA. Peak vertical jump power estimations in youths and young adults. J Strength Cond Res 26(7): 1749–1755, 2012—The purpose of this study was to develop and validate a regression equation to estimate peak power (PP) using a large sample of athletic youths and young adults. Anthropometric and vertical jump ground reaction forces were collected from 460 male volunteers (age: 12–24 years). Of these 460 volunteers, a stratified random sample of 45 subjects representing 3 different age groups (12–15 years [n = 15], 16–18 years [n = 15], and 19–24 years [n = 15]) was selected as a validation sample. Data from the remaining 415 subjects were used to develop a new equation (“Novel”) to estimate PP using age, body mass (BM), and vertical jump height (VJH) via backward stepwise regression. Independently, age (r = 0.57), BM (r = 0.83), and VJ (r = 0.65) were significantly (p < 0.05) correlated with PP. However, age did not significantly (p = 0.53) contribute to the final prediction equation (Novel): PP (watts) = 63.6 × VJH (centimeters) + 42.7 × BM (kilograms) − 1,846.5 (r = 0.96; standard error of the estimate= 250.7 W). For each age group, there were no differences between actual PP (overall group mean ± SD: 3,244 ± 991 W) and PP estimated using Novel (3,253 ± 1,037 W). Conversely, other previously published equations produced PP estimates that were significantly different than actual PP. The large sample size used in this study (n = 415) likely explains the greater accuracy of the reported Novel equation compared with previously developed equations (n = 17–161). Although this Novel equation can accurately estimate PP values for a group of subjects, between-subject comparisons estimating PP using Novel or any other previously published equations should be interpreted with caution because of large intersubject error (± >600 W) associated with predictions.

1Human Performance Laboratory, Fitness and Human Performance Program, University of Houston-Clear Lake, Houston, Texas

2Department of Kinesiology, Center for Sport Performance, California State University, Fullerton, California

Address correspondence to William E. Amonette,

© 2012 National Strength and Conditioning Association