Home Current Issue Previous Issues Published Ahead-of-Print Collections For Authors Journal Info
Skip Navigation LinksHome > May 2011 - Volume 25 - Issue 5 > Postexercise Carbohydrate–Protein Supplementation Improves S...
Journal of Strength & Conditioning Research:
doi: 10.1519/JSC.0b013e318212db21
Original Research

Postexercise Carbohydrate–Protein Supplementation Improves Subsequent Exercise Performance and Intracellular Signaling for Protein Synthesis

Ferguson-Stegall, Lisa; McCleave, Erin L; Ding, Zhenping; Doerner, Phillip G III; Wang, Bei; Liao, Yi-Hung; Kammer, Lynne; Liu, Yang; Hwang, Jungyun; Dessard, Benjamin M; Ivy, John L

In the Press
In the Press
Collapse Box

Abstract

Ferguson-Stegall, L, McCleave, EL, Ding, Z, Doerner III, PG, Wang, B, Liao, Y-H, Kammer, L, Liu, Y, Hwang, J, Dessard, BM, and Ivy, JL. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res 25(5): 1210-1224, 2011-Postexercise carbohydrate-protein (CHO + PRO) supplementation has been proposed to improve recovery and subsequent endurance performance compared to CHO supplementation. This study compared the effects of a CHO + PRO supplement in the form of chocolate milk (CM), isocaloric CHO, and placebo (PLA) on recovery and subsequent exercise performance. Ten cyclists performed 3 trials, cycling 1.5 hours at 70% V̇o2max plus 10 minutes of intervals. They ingested supplements immediately postexercise and 2 hours into a 4-hour recovery. Biopsies were performed at recovery minutes 0, 45, and 240 (R0, R45, REnd). Postrecovery, subjects performed a 40-km time trial (TT). The TT time was faster in CM than in CHO and in PLA (79.43 ± 2.11 vs. 85.74 ± 3.44 and 86.92 ± 3.28 minutes, p ≤ 0.05). Muscle glycogen resynthesis was higher in CM and in CHO than in PLA (23.58 and 30.58 vs. 7.05 μmol·g−1 wet weight, p ≤ 0.05). The mammalian target of rapamycin phosphorylation was greater at R45 in CM than in CHO or in PLA (174.4 ± 36.3 vs. 131.3 ± 28.1 and 73.7 ± 7.8% standard, p ≤ 0.05) and at REnd in CM than in PLA (94.5 ± 9.9 vs. 69.1 ± 3.8%, p ≤ 0.05). rpS6 phosphorylation was greater in CM than in PLA at R45 (41.0 ± 8.3 vs. 15.3 ± 2.9%, p ≤ 0.05) and REnd (16.8 ± 2.8 vs. 8.4 ± 1.9%, p ≤ 0.05). FOXO3A phosphorylation was greater at R45 in CM and in CHO than in PLA (84.7 ± 6.7 and 85.4 ± 4.7 vs. 69.2 ± 5.5%, p ≤ 0.05). These results indicate that postexercise CM supplementation can improve subsequent exercise performance and provide a greater intracellular signaling stimulus for PRO synthesis compared to CHO and placebo.

© 2011 National Strength and Conditioning Association

 

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.