Institutional members access full text with Ovid®

Share this article on:

Effects of Aging and Training Status on Ventilatory Response During Incremental Cycling Exercise

Lenti, Mauro1; De Vito, Giuseppe1,2; di Palumbo, Alessandro Scotto1; Sbriccoli, Paola1; Quattrini, Filippo M3; Sacchetti, Massimo1

Journal of Strength & Conditioning Research: May 2011 - Volume 25 - Issue 5 - pp 1326-1332
doi: 10.1519/JSC.0b013e3181d99061
Original Research

Lenti, M, De Vito, G, Scotto di Palumbo A, Sbriccoli, P, Quattrini, FM, and Sacchetti, M. Effects of aging and training status on ventilatory response during incremental cycling exercise. J Strength Cond Res 25(5): 1326-1332, 2011-The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (V̇o2max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min−1·kg−1 V̇o2) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of V̇o2max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher V̇o2max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.

1Department of Human Movement and Sports Sciences, University of Rome “Foro Italico,” Rome, Italy; 2School of Physiotherapy and Performance Science, Institute of Sport and Health, University College Dublin, Dublin, Ireland; and 3Institute of Sport Medicine and Science, National Olympic Committee, Rome, Italy

Address correspondence to Massimo Sacchett,

© 2011 National Strength and Conditioning Association