You could be reading the full-text of this article now if you...

If you have access to this article through your institution,
you can view this article in

Relationship Between Force-Time and Velocity-Time Characteristics of Dynamic and Isometric Muscle Actions

Khamoui, Andy V; Brown, Lee E; Nguyen, Diamond; Uribe, Brandon P; Coburn, Jared W; Noffal, Guillermo J; Tran, Tai

Journal of Strength & Conditioning Research:
doi: 10.1519/JSC.0b013e3181b94a7b
Original Research
Abstract

Khamoui, AV, Brown, LE, Nguyen, D, Uribe, BP, Coburn, JW, Noffal, GJ, and Tran, T. Relationship between force-time and velocity-time characteristics of dynamic and isometric muscle actions. J Strength Cond Res 25(1): 198-204, 2011-Previous research has investigated the force-time curve characteristics of isometric and dynamic muscle actions; however, few studies have addressed their relationship to dynamic exercise velocity-time variables. The purpose of this study was to investigate relationships between velocity-time characteristics (high pull and vertical jump peak velocity and rate of velocity development [HPPV, HPRVD, VJPV, VJRVD]), force-time characteristics (isometric peak force [IsoPF], body mass adjusted isometric peak force [IsoPF/BM], isometric rate of force development at different millisecond windows [IsoRFD50-250], dynamic peak force [HPPF], body mass adjusted dynamic peak force [HPPF/BM]), and vertical jump height (VJHeight). Nineteen recreationally trained men (age 23.89 ± 2.92 yr; height 176.32 ± 7.06 cm; mass 78.76 ± 16.50 kg) completed 2 testing sessions. The first session consisted of 3 isometric mid-thigh pulls on a force plate with each repetition held for 3 seconds. On the second testing session, subjects completed 3 dynamic mid-thigh high pulls with 30% IsoPF followed by 3 vertical jumps on a force plate. The HPRVD correlated with IsoRFD50 (r = 0.52) and IsoRFD100 (r = 0.49). The HPPV correlated with IsoPF/BM (r = −0.60), IsoRFD50 (r = 0.56), and IsoRFD100 (r = 0.56). The VJHeight correlated with IsoPF/BM (r = 0.61), whereas VJPV correlated with IsoPF/BM (r = 0.62). These correlations suggest that explosive isometric force production within 50 to100 milliseconds may influence the ability to accelerate an implement or body and attain high velocity, albeit in a moderate fashion. In addition, body mass adjusted strength may positively influence vertical jump parameters.

Author Information

Human Performance Laboratory, Department of Kinesiology, California State University, Fullerton, Fullerton, California

Address correspondence to Lee E. Brown, leebrown@fullerton.edu.

© 2011 National Strength and Conditioning Association