Skip Navigation LinksHome > February 2011 - Volume 68 - Issue 2 > High-Dose Intra-arterial Verapamil for the Treatment of Cere...
doi: 10.1227/NEU.0b013e318201be47
Research-Human-Clinical Studies

High-Dose Intra-arterial Verapamil for the Treatment of Cerebral Vasospasm After Subarachnoid Hemorrhage: Prolonged Effects on Hemodynamic Parameters and Brain Metabolism

Stuart, R Morgan MD*; Helbok, Raimund MD†; Kurtz, Pedro MD†; Schmidt, Michael PhD†; Fernandez, Luis MD†; Lee, Kiwon MD†; Badjatia, Neeraj MD, MSc†; Mayer, Stephan A MD†; Lavine, Sean MD*; Meyers, Philip MD*; Connolly, E Sander MD*; Claassen, Jan MD†

Collapse Box


BACKGROUND: Studies attempting to establish the safety and efficacy of standard and high-dose intra-arterial infusions of calcium channel blockers for treatment of cerebral vasospasm have focused on hemodynamic changes during the angiographic procedure.

OBJECTIVE: To evaluate longer-term drug effects over the hours following infusion and the effects on brain tissue oxygen tension or cerebral metabolism.

METHODS: We studied 11 patients with poor-grade aneurysmal subarachnoid hemorrhages who underwent multimodality brain monitoring and angiography with infusion of high-dose intra-arterial verapamil (≥15 mg total dose). Hourly intracerebral microdialysis measurements and continuously recorded mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), and Pbto2 were analyzed for 6 hours before and 12 hours following treatment.

RESULTS: A median dose of 23 mg (range, 15-55 mg) of intra-arterial verapamil was given. Compared with baseline values, reductions in CPP and MAP were maximal at 3 hours postangiography (from 105 ± 13 mm Hg to 95 ± 15 mm Hg and from 116 ± 12 mm Hg to 106 ± 16 mm Hg, P < .01) and persisted for up to 6 hours (P < .04); increases in vasopressor therapy were required in 8 procedures (53%). ICP significantly increased during the first 3 hours post angiography (P < .03). Brain glucose increased by 33% by hour 9 (P < .001). There were no significant changes in Pbto2 or the lactate/pyruvate ratio.

CONCLUSION: High-dose intra-arterial verapamil causes increases in ICP and reductions in CPP, followed by an increase in brain glucose levels, without altering brain oxygen tension or oxidative metabolism. Patients undergoing high-dose intra-arterial verapamil therapy warrant close hemodynamic and ICP monitoring for at least 12 hours following treatment.

Copyright © by the Congress of Neurological Surgeons


Article Tools


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.