NeuroReport

Skip Navigation LinksHome > October 20, 2000 - Volume 11 - Issue 15 > Role of cholinergic and GABAergic systems in the feedback in...
Neuroreport:
Synaptic Transmission

Role of cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5‐HT neurons

Haddjeri, Nasser1; Lucas, Guillaume2; Blier, Pierre1,3

Collapse Box

Abstract

Several observations indicate that 5-HT1A receptors found on a long neuronal feedback loop, originating from the medial prefrontal cortex, regulate 5-HT neuronal firing. In the present study, the muscarinic (M) receptor antagonists atropine and scopolamine as well as the M2 receptor antagonist AF-DX 116, but not the preferential M1 receptor antagonist pirenzepine, reduced the suppressant effect of the 5-HT1A receptor agonist 8-OH-DPAT on the spontaneous firing activity of rat dorsal raphe 5-HT neurons. Moreover, AF-64A-induced lesions of cholinergic neurons directly in the medial prefrontal cortex and after its i.c.v. injection attenuated the effect of 8-OH-DPAT. Finally, the NMDA receptor antagonist (+) MK-801 and the GABAB receptor antagonist SCH-50911, but not the GABAA receptor antagonist (−) bicuculline, dampened the latter response. The present study unveiled a key role for the cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons.

© 2000 Lippincott Williams & Wilkins, Inc.

Login

Article Tools

Share

Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.