Home Current Issue Previous Issues Published Ahead-of-Print Collections For Authors Journal Info
Skip Navigation LinksHome > May 2009 - Volume 4 - Issue 5 > The IASLC Lung Cancer Staging Project: A Proposal for a New...
Journal of Thoracic Oncology:
doi: 10.1097/JTO.0b013e3181a0d82e
IASLC Staging Committee Article

The IASLC Lung Cancer Staging Project: A Proposal for a New International Lymph Node Map in the Forthcoming Seventh Edition of the TNM Classification for Lung Cancer

Rusch, Valerie W. MD*; Asamura, Hisao MD†; Watanabe, Hirokazu MD‡; Giroux, Dorothy J. MS§; Rami-Porta, Ramon MD∥; Goldstraw, Peter MD¶; on Behalf of the Members of the IASLC Staging Committee

Free Access
Article Outline
Collapse Box

Author Information

*Thoracic Surgery Service, Memorial Sloan-Kettering Cancer Center, New York City, New York; Divisions of †Thoracic Surgery, ‡Diagnostic Radiology, National Cancer Center Hospital, Tokyo, Japan; §Cancer Research and Biostatistics, Seattle, Washington; ∥Thoracic Surgery Service, Hospital Mutua de Terrassa, Terrassa, Spain; and ¶Department of Thoracic Surgery, Royal Brompton Hospital, London, United Kingdom.

Disclosure: Please see Acknowledgments Section.

Address for correspondence: Valerie W. Rusch, MD, Thoracic Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, C-868, New York City, NY 10065. E-mail: ruschv@mskcc.org

Collapse Box

Abstract

The accurate assessment of lymph node involvement is an important part of the management of lung cancer. Lymph node “maps” have been used to describe the location of nodal metastases. However, discrepancies in nomenclature among maps used by Asian and Western countries hinder analyses of lung cancer treatment outcome. To achieve uniformity and to promote future analyses of a planned prospective international database, the International Association for the Study of Lung Cancer proposes a new lymph node map which reconciles differences among currently used maps, and provides precise anatomic definitions for all lymph node stations. A method of grouping lymph node stations together into “zones” is also proposed for the purposes of future survival analyses.

The accurate assessment of lymph node involvement is recognized as a pivotal component of the staging and treatment of lung cancers. For approximately the past 40 years, lymph node “maps” have been used to describe the clinical and pathologic extent of lymph node metastases in lung cancer patients by labeling regions of intrathoracic nodes using a system of anatomic descriptors and numerical “levels.” Precise, universally accepted nomenclature to describe lymph node involvement is key to assessing treatment outcomes, comparing results across institutions, designing and analyzing clinical trials, and selecting therapy for individual patients. The first lymph node map, developed by Naruke1,2 during the 1960s, was initially widely used in North America, Europe, and Japan (Figure 1). However, subsequent attempts to refine the anatomic descriptors of the Naruke map led to the development of maps by the American Thoracic Society (ATS)3 and to the so-called Mountain-Dresler modification of the ATS map (MD-ATS).4 The MD-ATS map (Figure 2) attempted to unify in a single system the features of the Naruke lymph node classification and the schema developed by the ATS and was reportedly adopted by the American Joint Committee on Cancer (AJCC) and the Prognostic Factors TNM Committee of the International Union Against Cancer (UICC) at the 1996 annual meetings of these organizations.4 Subsequently, the MD-ATS map was fully accepted across North America but was only sporadically used in Europe. Indeed, further revisions to the MD-ATS map were suggested by European surgeons.5 Following well-established national practice patterns, Japanese surgeons and oncologists continued to use the Naruke map as advocated by the Japan Lung Cancer Society.6

Figure 1
Figure 1
Image Tools
Figure 2
Figure 2
Image Tools

In 1998, the International Association for the Study of Lung Cancer (IASLC) established its Lung Cancer Staging Project which led to the development of an international lung cancer database. Analyses of that database enabled the IASLC International Staging Committee to propose revisions of the TNM staging system for lung cancer which will be included in the 7th editions of the UICC and AJCC staging manuals to be published in 2009.7 Analyses of the N descriptors in the IASLC international database highlighted discrepancies in nomenclature between the Japanese (Naruke) and the MD-ATS lymph node maps. Important differences in the descriptors for mediastinal lymph nodes included level 1 lymph nodes in the Naruke map corresponding to levels 1 and 2 in the MD-ATS map, while levels 2, 3, 4R, and 4L in the Japanese system corresponded to levels 4R and 4L in the MD-ATS map. Perhaps the most significant discrepancy was that level 7 subcarinal lymph nodes in the MD-ATS map corresponded to levels 7 and 10 in the Naruke map. As a result, some tumors staged as N2, stage IIIA according to the MD-ATS map, were staged as N1, stage II by the Naruke map. Within the context of a retrospective study, this difference in nomenclature introduced an irreconcilable discrepancy in data analysis.8 As a consequence of the difficulties encountered in analyses of N descriptors, members of the IASLC staging committee were charged to develop a revised lymph node map that would reconcile differences between the Japanese and MD-ATS maps and provide more specific anatomic definitions for each of the lymph node stations. This effort was considered critical to the prospective international lung cancer data collection planned by the IASLC starting in 2009 which will inform revisions for the 8th editions of the UICC and AJCC staging manuals 7 years hence. We now describe the IASLC lymph node map which we anticipate will supersede all previous maps for the purposes of precision and international uniformity in nomenclature.

Back to Top | Article Outline

METHODS

Two of the authors (V.R., H.A.) were assigned by the IASLC Staging Committee to lead the effort in developing a revised lymph node map that would reconcile the differences between the Naruke and the MD-ATS maps and refine the definitions of the anatomic boundaries of each of the lymph node stations.

Areas of discrepancy for the descriptors of each lymph node station were identified and new, clarifying definitions for the anatomic borders established (Table 1). A collaborating thoracic radiologist (H.W.) reviewed the definitions to insure that they could be applied to clinical staging by computed tomography (CT), and generated the CT scan illustrations that corresponded to the IASLC lymph node map definitions. The recommendations for the definitions of the lymph node stations and for the illustration of the proposed IASLC map were reviewed by the entire IASLC staging committee, an international multidisciplinary group including thoracic surgeons, medical and radiation oncologists, pulmonologists, epidemiologists, radiologists, pathologists, and data managers. In addition, one of the authors (H.A.) presented the proposed lymph node map and anatomic definitions at thoracic meetings in Japan for comments and approval.

Table 1
Table 1
Image Tools
Table 1
Table 1
Image Tools
Table 1
Table 1
Image Tools
Back to Top | Article Outline

RESULTS

The proposed IASLC lymph node map and the anatomic definitions for each of the lymph node stations are shown in Figure 3 and Table 1, respectively. There are several notable changes relative to the Naruke and MD-ATS maps. Concise and anatomically distinct descriptions are now provided for all lymph node stations and especially for the upper and lower borders of lymph node stations 1 through 10 where it is critical to avoid overlap in definitions. As a result, the pleural reflection no longer serves as the border between nodal stations 4 and 10, which are now defined by anatomic landmarks that are more reliably identified on imaging studies and at endoscopy and surgery. The supraclavicular and sternal notch lymph nodes which were not previously identified as a lymph node station separate from the intrathoracic nodes are now clearly described as level 1. The discrepancies between levels 2 and 4 lymph nodes in the Naruke and MD-ATS lymph node maps (noted above) have been resolved by providing more precise definitions. The arbitrary division along the midline of the trachea created by the ATS has been eliminated. Recognizing that lymphatic drainage in the superior mediastinum predominantly occurs to the right paratracheal area and extends past the midline of the trachea, the boundary between the right- and left-sided levels 2 and 4 lymph nodes has been reset to the left lateral wall of the trachea (Figures 3, 4). The arbitrary designation of level 3 lymph nodes as nodes overlying the midline of the trachea in the Naruke map has been eliminated because these nodes are not reliably distinguishable from levels 2 and 4 and are generally removed en-bloc with level 4 during a mediastinal component of systematic nodal dissection from the right. The designation of prevascular (anterior mediastinal) and retrotracheal nodes as 3a and 3p has been retained and clarified. The entire subcarinal group of lymph nodes, previously labeled as level 7 in the MD-ATS map but divided into levels 7 and 10 in the Naruke map is now defined as level 7, again with precise anatomic borders. Specific boundaries are also provided for the frequently problematic separation between levels 4 and 10 on the right, levels 5 and 10 on the left, and levels 10 and 11 bilaterally. Exploratory analyses of overall survival in relationship to various levels of lymph node involvement previously grouped together certain lymph node stations into “zones.”8 The zone concept is proposed for future survival analyses, not for current standard nomenclature. It is hoped that this concept will prove of value to oncologists and radiologists when dealing with large nodal masses that transgress individual nodal stations.

Figure 3
Figure 3
Image Tools
Figure 4
Figure 4
Image Tools

Figures 4AF illustrate how the anatomic definitions of the lymph node stations are applied to clinical staging on CT scans in the axial (Figures 4AC), coronal (Figure 4D), and sagittal (Figures 4E, F) views. The division between right and left sided nodes at levels 2 and 4 is also shown (Figures 4A, B).

Back to Top | Article Outline

DISCUSSION

Scientific investigation into the patterns of lymphatic drainage of the lung dates back to the early 1900s. However, Rouvière9 is generally credited with the first comprehensive study of the lymphatic drainage of the lung. In 1929, he described the lymph nodes draining each lobe of the lung as determined by selective injection of the lymphatics in 200 human specimens. In his report, he noted that it was possible to predict which lymph nodes would be involved based on the location of the primary tumor. The illustrations of lobar lymphatic drainage included in this seminal article have been corroborated by more recent studies and are still accurate today. During the 1950s and 1960s additional studies expanded our knowledge of the patterns of pulmonary and mediastinal lymphatic drainage especially in patients with lung cancer.10,11 More recently, Riquet defined the lymphatic drainage of lung segments including direct drainage to mediastinal lymph nodes by injecting the subpleural lymphatics of 483 lung segments in 260 adult cadavers.12 Overall, these various studies indicated that mediastinal lymph node metastases from right upper lobe tumors occur predominantly in the right paratracheal area, while those from left upper lobe tumors occur most frequently in the peri- and subaortic lymph nodes, and those from middle and lower lobe tumors occur in the subcarinal, then the right paratracheal nodes. Direct drainage to the mediastinal lymph nodes bypassing the hilar and interlobar nodes or so-called skip metastases, can be seen in up to 25% of lung segments injected experimentally.12 Clinically, skip metastases have been reported in 7 to 26% of resected lung cancer specimens and are most frequent in upper lobe tumors and in adenocarcinomas.13,14

Studies of the patterns of lymphatic drainage of the lung gradually led to an understanding of the importance of lymph node staging in the management of lung cancers. Cahan is credited with the first description of a systematic approach to hilar and mediastinal lymph node dissection, initially in 1951 in conjunction with pneumonectomy,15 and later, in 1960, in association with lobectomy.16 Shortly thereafter, Ishikawa introduced the dissection proposed by Cahan to Japan and based on the results of patients undergoing pulmonary resection with hilar and mediastinal lymph node dissection by Ishikawa and his team, Naruke created his lymph node map in 1967. The Japan Lung Cancer Society endorsed lymph node dissection and the Naruke map as standard procedure for lung cancer resection in 1980.17,18 In North America during the 1960s, the group at Memorial Sloan-Kettering Cancer Center (of which Cahan was part) devised a lung cancer staging system and lymph node nomenclature similar to the Naruke system.19 However, ultimately, MSKCC and other North American groups adopted the Naruke map which was then accepted in 1976 by the AJC (American Joint Committee for Cancer Staging and End Results Reporting) for standard use in the staging of lung cancers. The need to provide more precise anatomic definitions for intrathoracic lymph node stations in a way that would be useful for radiologists, pathologists, and all clinicians involved in the care of lung cancer patients led to the development of the ATS and MD-ATS maps. The presence of these two mapping systems was acknowledged starting in 1997 with the 4th edition of the UICC TNM Atlas20 and the 5th and 6th editions of the AJCC staging manuals.21 During this time, the Japan Lung Cancer Society refined the anatomic definitions of the lymph node stations in the Naruke map. Detailed descriptions as well as anatomic and CT illustrations provided in the Japan Lung Cancer Society monograph Classification of Lung Cancer established national standards of staging and pathologic classification for lung cancer with a degree of precision unparalleled elsewhere in the world. Unfortunately, an English edition of this monograph was not published until 2000.6 Therefore, although clinicians, especially surgeons, were generally aware of discrepancies between the Japanese and MD-ATS map and knew that such differences could affect analyses of treatment outcomes because of their impact on staging, the extent of these discrepancies was not evident until recently. The difficulties in assessing the outcomes of treatment for patients staged accordingly to different lymph node maps are emphasized by the complexities and irreconcilable discrepancies encountered during analyses of the N descriptors in the IASLC database.8 However, discrepancies in the labeling of lymph node stations occur even among experienced Japanese and non-Japanese surgeons utilizing only the Naruke map. In one study, a Japanese surgeon and a European surgeon who were jointly present during pulmonary resections performed on 41 patients designated in a manner blinded to one another each lymph node station removed during a systematic lymph node dissection. The total concordance rate was only 68.5%. Of even greater concern was that in 34.1% of patients, lymph nodes designated as N1 by one surgeon were labeled as N2 by the other surgeon.22 Clearly, a single internationally accepted lymph node map is needed for future studies of lung cancer treatment and revisions of the staging system. This is especially important during the coming decades as an increasing number of developing countries with large lung cancer patient populations that have not systematically used either one lymph node map or the other in the past begin to contribute their data to the prospective international IASLC database.

Analyses of outcome in relationship to the extent of lymph node involvement have been used to propose changes to the lung cancer staging system, to select patients for multimodality treatment and to stratify patients within clinical trials. The published surgical literature is replete with such analyses, which are too numerous to list in their entirety here.13,23–33 Areas of continuing controversy regarding the relationship between lymph nodes metastases and overall survival include: intranodal versus extranodal disease23; single versus multiple (either N1 or N2) lymph node station disease13,24,27–32; the specific sites of lymph node metastases in relationship to the location of the primary tumor24,28,31; the significance of skip metastases13; and the need for systematic lymph node dissection versus a less extensive lymph node sampling,25 especially for tumors less than 2 cm in size.26 Analyses of the IASLC database suggested that left upper lobe tumors with skip metastases in the AP zone (levels 5 and 6) were associated with a more favorable prognosis than other N2 subsets. In addition, analyses of the potential impact of the number of involved lymph node zones on survival found three groups to have significantly different survival rates: patients who had N1 single zone disease, those who had either multiple N1 or single N2 zone metastases, and those who had multiple N2 lymph node zones involved. However, a firm recommendation for changes in the N descriptors and stage groupings could not be made because larger numbers of patients with precise lymph node staging that can be analyzed across each T stage are required to yield statistically valid results. Grouping together patient groups according to lymph node “zones” was a mechanism used in the analysis of the retrospective IASLC database to reconcile the Naruke and the MD-ATS lymph node maps which seemed justified on the basis of exploratory analyses.8 Prospective analyses in larger number of uniformly staged patients are required to determine whether grouping lymph node stations together into “zones,” as proposed here, is truly appropriate for analyses of survival. The continuing controversies about the current N classifications and the challenges encountered by the IASLC staging committee in analyzing an international database attest to the need for an internationally accepted lymph node map that will support an uniform approach to lymph node staging.34 It is our hope that widespread implementation of the IASLC lymph node map will provide the basis for future analyses to resolve many of the controversies about N stage classification that currently affect patient care and clinical trials.

Back to Top | Article Outline

ACKNOWLEDGMENTS

Eli Lilly and Company provided funding to support the International Association for the Study of Lung Cancer (IASLC) Staging Committee's work to suggest revisions to the 6th edition of the TNM classification for Lung Cancer (staging) through a restricted grant. Lilly had no input into the Committee's suggestions for revisions to the staging system. The project was also supported by the AJCC grant “Improving AJCC/UICC TNM Cancer Staging.”

We are grateful for the patient assistance of editor Melody Owens. The authors thank Dr. Annie Frazier for her superb contribution to the creation of the figures for this manuscript.

Back to Top | Article Outline

APPENDIX

IASLC International Staging Committee

P. Goldstraw (Chairperson), Royal Brompton Hospital, Imperial College, London, UK; H. Asamura, National Cancer Centre Hospital, Tokyo, Japan; D. Ball, Peter MacCallum Cancer Centre, East Melbourne, Australia; V. Bolejack, Cancer Research and Biostatistics, Seattle, Washington, USA; E. Brambilla, Laboratoire de Pathologie Cellulaire, Grenoble Cedex, France; P.A. Bunn, University of Colorado Health Sciences, Denver, Colorado; D. Carney, Mater Misericordiae Hospital, Dublin, Ireland; K. Chansky, Cancer Research and Biostatistics, Seattle, Washington, USA; T. Le Chevalier (resigned), Institute Gustave Roussy, Villejuif, France; J. Crowley, Cancer Research and Biostatistics, Seattle, Washington, USA; R. Ginsberg (deceased), Memorial Sloan-Kettering Cancer Center, New York, USA; D. Giroux, Cancer Research And Biostatistics, Seattle, Washington, USA; P. Groome, Queen's Cancer Research Institute, Kingston, Ontario, Canada; H.H. Hansen (retired), National University Hospital, Copenhagen, Denmark; P. Van Houtte, Institute Jules Bordet, Bruxelles, Belgium; J.-G. Im, Seoul National University Hospital, Seoul, South Korea; J.R. Jett, Mayo Clinic, Rochester, Minnesota, USA; H. Kato, (retired), Tokyo Medical University, Tokyo, Japan; C. Kennedy, University of Sydney, Sydney, Australia; M. Krasnik, Gentofte Hospital, Copenhagen, Denmark; J. van Meerbeeck, University Hospital, Ghent, Belgium; T. Naruke (deceased), Saiseikai Central Hospital, Tokyo, Japan; E.F. Patz, Duke University Medical Center, Durham, North Carolina, USA; P.E. Postmus, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; R. Rami-Porta, Hospital Mutua de Terrassa, Terrassa, Spain; V. Rusch, Memorial Sloan-Kettering Cancer Center, New York, USA; J.P. Sculier, Institute Jules Bordet, Bruxelles, Belgium; Z. Shaikh, Royal Brompton Hospital, London, UK; F.A. Shepherd, University of Toronto, Toronto, Ontario, Canada; Y. Shimosato (retired), National Cancer Centre, Tokyo, Japan; L. Sobin, Armed Forces Institute of Pathology, Washington DC; W. Travis, Memorial Sloan-Kettering Cancer Center, New York, USA; M. Tsuboi, Tokyo Medical University, Tokyo, Japan; R. Tsuchiya, National Cancer Centre, Tokyo, Japan; E. Vallieres, Swedish Cancer Institute, Seattle, Washington, USA; J. Vansteenkiste, Leuven Lung Cancer Group, Belgium; Yoh Watanabe (deceased), Kanazawa Medical University, Uchinada, Japan; and H. Yokomise, Kagawa University, Kagawa, Japan.

Back to Top | Article Outline

REFERENCES

1. Naruke T. [The spread of lung cancer and its relevance to surgery.] Nippon Kyobu Geka Gakkai Zasshi 1967;68:1607–1621.

2. Naruke T, Suemasu K, Ishikawa S. Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J Thorac Cardiovasc Surg 1978;76:833–839.

3. Tisi GM, Friedman PJ, Peters RM, et al. Clinical staging of primary lung cancer. Am Rev Respir Dis 1983;127:659–664.

4. Mountain CF, Dresler CM. Regional lymph node classification for lung cancer staging. Chest 1997;111:1718–1723.

5. Zielinski M, Rami-Porta R. Proposals for changes in the Mountain and Dresler mediastinal and pulmonary lymph node map. J Thorac Oncol 2007;2:3–6.

6. The Japan Lung Cancer Society. Classification of Lung Cancer. Tokyo: Kanehara & Co; 2000.

7. Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007;2:706–714.

8. Rusch VW, Crowley J, Giroux DJ, et al. The IASLC lung cancer staging project: proposals for the revision of the N descriptors in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol 2007;2:603–612.

9. Rouvière H. Les vaisseaux lymphatiques des poumons et les ganglions viscéraux intrathoraciques. Ann Anat Pathol 1929;6:113–158.

10. Nohl HC. An investigation into the lymphatic and vascular spread of carcinoma of the bronchus. Thorax 1956;11:172–185.

11. Pennell TC, Bradshaw HH. Anatomical study of the peripheral pulmonary lymphatics. J Thorac Cardiovasc Surg 1966;52:629–634.

12. Riquet M, Hidden G, Debesse B. Direct lymphatic drainage of lung segments to the mediastinal nodes. An anatomic study on 260 adults. J Thorac Cardiovasc Surg 1989;97:623–632.

13. Riquet M, Manac'h D, Saab M, Le Pimpec-Barthes F, Dujon A, Debesse B. Factors determining survival in resected N2 lung cancer. Eur J Cardiothorac Surg 1995;9:300–304.

14. Libshitz HI, McKenna RJ Jr, Mountain CF. Patterns of mediastinal metastases in bronchogenic carcinoma. Chest 1986;90:229–232.

15. Cahan WG, Watson WL, Pool JL. Radical pneumonectomy. J Thorac Cardiovasc Surg 1951;22:449–473.

16. Cahan WG. Radical lobectomy. J Thorac Cardiovasc Surg 1960;39:555–572.

17. Tsuchiya R. The complete hilar-mediastinal lymph node dissection. Ann Ital Chir 1999;70:887.

18. Naruke T. Mediastinal lymph node dissection. In FG Pearson, J Deslauriers, RJ Ginsberg (Eds.), Thoracic Surgery, 1st Ed. New York: Churchill-Livingston, 1995. Pp. 909–917.

19. Martini N. Mediastinal lymph node dissection for lung cancer. The memorial experience. Chest Surg Clin N Am 1995;5:189–203.

20. Union Internationale Contre le Cancer. Lung and pleural tumours. In P Hermanek, RVP Hutter, LH Sobin, et al. (Eds.), TNM Atlas, 4th Ed. Berlin: Springer, 1997.Pp. 153–166.

21. American Joint Committee on Cancer. AJCC Cancer Staging Handbook. New York: Springer-Verlag, 2002.

22. Watanabe S, Ladas G, Goldstraw P. Inter-observer variability in systematic nodal dissection: comparison of European and Japanese nodal designation. Ann Thorac Surg 2002;73:245–249.

23. Martini N, Flehinger BJ, Zaman MB, Beattie EJ Jr. Results of resection in non-oat cell carcinoma of the lung with mediastinal lymph node metastases. Ann Surg 1983;198:386–397.

24. Patterson GA, Piazza D, Pearson FG, et al. Significance of metastatic disease in subaortic lymph nodes. Ann Thorac Surg 1987;43:155–159.

25. Izbicki JR, Thetter O, Habekost M, et al. Radical systematic mediastinal lymphadenectomy in non-small cell lung cancer: a randomized controlled trial. Br J Surg 1994;81:229–235.

26. Sugi K, Nawata K, Fujita N, et al. Systematic lymph node dissection for clinically diagnosed peripheral non-small cell lung cancer less than 2 cm in diameter. World J Surg 1998;22:290–295.

27. Andre F, Grunewald D, Pignon J, et al. Survival of patients with resected N2 non-small cell lung cancer: evidence for a subclassification and implications. J Clin Oncol 2000;18:2981–2989.

28. Ichinose Y, Kato H, Koike T, et al. Completely resected stage IIIA non-small cell lung cancer: the significance of primary tumor location and N2 station. J Thorac Cardiovasc Surg 2001;122:803–808.

29. Okada M, Sakamoto T, Yuki T, et al. Border between N1 and N2 stations in lung carcinoma: lessons from lymph node metastatic patterns of lower lobe tumors. J Thorac Cardiovasc Surg 2005;129:825–830.

30. Keller SM, Vangel MG, Wagner H, et al. Prolonged survival in patients with resected non-small cell lung cancer and single-level N2 disease. J Thorac Cardiovasc Surg 2004;128:130–137.

31. Inoue M, Sawabata N, Takeda S, et al. Results of surgical intervention for p-stage IIIA (N2) non-small cell lung cancer: acceptable prognosis predicted by complete resection in patients with single N2 disease with primary tumor in the upper lobe. J Thorac Cardiovasc Surg 2004;127:1100–1106.

32. Ohta Y, Shimizu Y, Minato H, et al. Results of initial operations in non-small cell lung cancer patients with single-level N2 disease. Ann Thorac Surg 2006;81:427–433.

33. Sakao Y, Miyamoto H, Yamazaki A, et al. The spread of metastatic lymph nodes to the mediastinum from left upper lobe cancer: results of superior mediastinal nodal dissection through a median sternotomy. Eur J Cardiothorac Surg 2006;30:543–547.

34. Groome PA, Bolejack V, Crowley JJ, et al. The IASLC lung cancer staging project: validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2007;2:694–705.

Cited By:

This article has been cited 19 time(s).

Journal of Thoracic Oncology
Implementation of IASLC revised staging system: taking the new staging system into the clinic
Rusch, VW
Journal of Thoracic Oncology, 4(9): S17-S18.

American Journal of Roentgenology
A Radiologic Review of the New TNM Classification for Lung Cancer
Kligerman, S; Abbott, G
American Journal of Roentgenology, 194(3): 562-573.
10.2214/AJR.09.3354
CrossRef
Journal of Thoracic Oncology
New Tumor, Node, Metastasis Staging System for Lung Cancer
Arribalzaga, EB
Journal of Thoracic Oncology, 4(): 1301.

Journal of Thoracic and Cardiovascular Surgery
A cancer staging primer: Lung
Rice, TW; Murthy, SC; Mason, DP; Blackstone, EH
Journal of Thoracic and Cardiovascular Surgery, 139(4): 826-829.
10.1016/j.jtcvs.2009.11.010
CrossRef
Chest
The New Lung Cancer Staging System
Detterbeck, FC; Boffa, DJ; Tanoue, LT
Chest, 136(1): 260-271.
10.1378/chest.08-0978
CrossRef
Journal of Thoracic Oncology
Comments on the Proposed New International Lymph Node International Association for the Study of Lung Cancer Map
Irion, KL; Fewins, H; Binukrishnan, S
Journal of Thoracic Oncology, 4(): 1445.

Cytopathology
Endobronchial ultrasound-guided transbronchial needle aspiration cytology: a state of the art review
Cameron, SEH; Andrade, RS; Pambuccian, SE
Cytopathology, 21(1): 6-26.
10.1111/j.1365-2303.2009.00722.x
CrossRef
Journal of Thoracic Oncology
Endoscopic and Endobronchial Ultrasonography According to the Proposed Lymph Node Map Definition in the Seventh Edition of the Tumor, Node, Metastasis Classification for Lung Cancer
Tournoy, KG; Annema, JT; Krasnik, M; Herth, FJF; van Meerbeeck, JP
Journal of Thoracic Oncology, 4(): 1576-1584.

Future Oncology
Updated lung cancer staging system
Rami-Porta, R; Chansky, K; Goldstraw, P
Future Oncology, 5(): 1545-1553.
10.2217/FON.09.131
CrossRef
European Journal of Cardio-Thoracic Surgery
Stage IIIA N2 non-small-cell lung cancer: current controversies in combined-modality therapy
Thomas, PA
European Journal of Cardio-Thoracic Surgery, 36(3): 431-432.
10.1016/j.ejcts.2009.04.024
CrossRef
Advances in Anatomic Pathology
An Update on Lung Cancer Staging
Jones, KD
Advances in Anatomic Pathology, 17(1): 33-37.
10.1097/PAP.0b013e3181c66f15
PDF (318) | CrossRef
Journal of Thoracic Oncology
We Probably have the Answer: Now What is the Question?
Goldstraw, P; Rami-Porta, R; Crowley, J
Journal of Thoracic Oncology, 4(8): 939-940.
10.1097/JTO.0b013e3181a76e42
PDF (117) | CrossRef
Journal of Thoracic Oncology
Caudal Border of Level 2R in the New International Lymph Node Map for Lung Cancer
Ichimura, H; Kikuchi, S; Ishikawa, H
Journal of Thoracic Oncology, 5(4): 579.
10.1097/JTO.0b013e3181d3cd08
PDF (636) | CrossRef
Journal of Thoracic Oncology
The 7th Edition of TNM in Lung Cancer: What Now?
Goldstraw, P
Journal of Thoracic Oncology, 4(6): 671-673.
10.1097/JTO.0b013e31819e7814
PDF (163) | CrossRef
Journal of Thoracic Oncology
Prognostic Impact of Node Involvement Pattern in Pulmonary pN1 Squamous Cell Carcinoma Patients
Nakao, M; Yoshida, J; Ishii, G; Hishida, T; Nishimura, M; Nagai, K
Journal of Thoracic Oncology, 5(4): 504-509.
10.1097/JTO.0b013e3181ccb391
PDF (1058) | CrossRef
Journal of Thoracic Oncology
Esophageal Ultrasound-Controlled Fine Needle Aspiration for Staging of Mediastinal Lymph Nodes in Patients with Resectable Lung Cancer: Do We Always See the Reality?
Dooms, C; Vansteenkiste, J; Renterghem, DV; Leyn, PD
Journal of Thoracic Oncology, 4(8): 1043-1045.
10.1097/JTO.0b013e3181ad81ac
PDF (875) | CrossRef
Journal of Thoracic Oncology
Response to Letter to the Editor
Rusch, VW; Asamura, H; Goldstraw, P
Journal of Thoracic Oncology, 5(4): 579-580.
10.1097/JTO.0b013e3181d43cdd
PDF (636) | CrossRef
Journal of Thoracic Oncology
From Individual Lymph Nodes to Stations and Zones: East and West Reconciled?
Van Schil, PE
Journal of Thoracic Oncology, 4(5): 561-562.
10.1097/JTO.0b013e3181a0d77c
PDF (115) | CrossRef
Journal of Thoracic Oncology
The IASLC Lung Cancer Staging Project: Data Elements for the Prospective Project
Giroux, DJ; Rami-Porta, R; Chansky, K; Crowley, JJ; Groome, PA; Postmus, PE; Rusch, V; Sculier, J; Shepherd, FA; Sobin, L; Goldstraw, P; On behalf of the International Association for the Study of Lung Cancer International Staging Committee,
Journal of Thoracic Oncology, 4(6): 679-683.
10.1097/JTO.0b013e3181a52370
PDF (268) | CrossRef
Back to Top | Article Outline
Keywords:

Lung cancer lymph node map; Lung cancer staging; Pulmonary and mediastinal lymph nodes; lymph node zones; TNM classification

© 2009International Association for the Study of Lung Cancer

Login

Article Tools

Images

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Other Ways to Connect

Twitter
twitter.com/JTOonline

 



Visit JTO.org on your smartphone. Scan this code (QR reader app required) with your phone and be taken directly to the site.

 For additional oncology content, visit LWW Oncology Journals on Facebook.