Skip Navigation LinksHome > June 2014 - Volume 9 - Issue 6 > Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth...
Journal of Thoracic Oncology:
doi: 10.1097/JTO.0000000000000170
Original Articles

Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

Nakade, Junya MS*; Takeuchi, Shinji MD, PhD*; Nakagawa, Takayuki MS*; Ishikawa, Daisuke MD*; Sano, Takako PhD*; Nanjo, Shigeki MD*; Yamada, Tadaaki MD, PhD*; Ebi, Hiromichi MD, PhD*; Zhao, Lu MS*; Yasumoto, Kazuo MD, PhD*; Matsumoto, Kunio PhD; Yonekura, Kazuhiko PhD; Yano, Seiji MD, PhD*

Open Access
Collapse Box

Abstract

Introduction:

Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer.

Methods:

Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined.

Results:

Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment.

Conclusion:

These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivitives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

Copyright © 2014 by the International Association for the Study of Lung Cancer

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Other Ways to Connect

Twitter
twitter.com/JTOonline

 



Visit JTO.org on your smartphone. Scan this code (QR reader app required) with your phone and be taken directly to the site.

 For additional oncology content, visit LWW Oncology Journals on Facebook.