Institutional members access full text with Ovid®

Share this article on:

The Biomechanical Significance of Anterior Column Support in a Simulated Single-Level Spinal Fusion

Polly, David W Jr; Klemme, William R; Cunningham, Bryan W*; Burnette, Jeffrey B; Haggerty, Charles J*; Oda, Itaru*

Original Articles And Case Reports

This study examines the biomechanical effects of interbody cages and variations in posterior rod diameter in a simulated single-level spinal fusion. A single-level spinal fusion model composed of polyethylene cylinders, posterior pedicular instrumentation, and variously positioned single or dual interbody cages was used for biomechanical testing. Constructs were tested under compressive flexural load, with measurement of stiffness, rod strain, cage strain, and intracage pressure. A strong linear correlation emerged between the mean construct stiffness and cage positioning within the sagittal plane that was inversely related to posterior rod strain. Two small titanium mesh cages were equivalent to one large cage. In a single-level spine model, the presence of and sagittal position of interbody cages significantly influences overall construct stiffness. Cage strain increased with more anterior positions and was inversely related to rod strain.

Walter Reed Army Medical Center, Washington, D.C.; and *Orthopaedics Biomechanics Laboratory, Union Memorial Hospital, Baltimore, Maryland, U.S.A.

Received April 21, 1999; accepted August 10, 1999.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the United States Army or the Department of Defense. Three of the authors are employees of the United States government.

Presented at the annual meetings of the Scoliosis Research Society, September 16–20, 1998, New York, NY; North American Spine Society, October 29–31, 1998, San Francisco, CA; and the Society of Military Orthopaedic Surgeons, December 6–10, 1998, Vail, CO.

Address correspondence and reprint requests to LTC D. W. Polly, Jr., Orthopaedic Surgery Service, Walter Reed Army Medical Center, Washington, DC 20310, U.S.A.

© 2000 Lippincott Williams & Wilkins, Inc.