Skip Navigation LinksHome > April 2013 - Volume 56 - Issue 4 > Response to Hepatitis A and B Vaccination in Pediatric Patie...
Journal of Pediatric Gastroenterology & Nutrition:
doi: 10.1097/MPG.0b013e31827af200
Original Articles: Gastroenterology

Response to Hepatitis A and B Vaccination in Pediatric Patients With Celiac Disease

Urganci, Nafiye*; Kalyoncu, Derya

Free Access
Article Outline
Collapse Box

Author Information

*Division of Pediatric Gastroenterology

Department of Pediatrics, Sisli Etfal Training and Research Hospital, Istanbul, Turkey.

Address correspondence and reprint requests to Derya Kalyoncu, Department of Sisli Etfal Training and Research Hospital, 34270 Istanbul, Turkey (e-mail: deryakaly@hotmail.com).

Received 26 July, 2012

Accepted 10 September, 2012

The authors report no conflicts of interest.

Collapse Box

Abstract

Objectives: The aim of the study was to evaluate the response to hepatitis A and B vaccinations in pediatric patients with celiac disease (CD).

Methods: Thirty patients with CD ages 1 to 15 years were compared with 50 healthy age-, sex-, and body mass index–matched controls. Screening for hepatitis A and B serology was carried out before vaccination. Susceptible cases received 20 μg of recombinant DNA vaccine for hepatitis B (0,1, and 6 months) and 720 milliELISA units of inactivated hepatitis A virus (HAV) vaccine (0 and 6 months). Postvaccination serologic evaluation was performed 1 month after the last dose of primary vaccination, 1 month after the booster dose, and once every year during follow-up.

Results: Sixteen patients and 35 controls received hepatitis A vaccine; protective anti-HAV antibodies were developed in 12 (75%) of the patients and all of the controls (75% vs 100%, respectively; 95% confidence interval [CI] 0.47–0.92, P = 0.007). Thirty patients and 50 controls received hepatitis B vaccine, and 70% of the patients vs 90% of the controls achieved seroprotection (anti-HBs titers ≥10 mIU/mL) 1 month after primary vaccination (95% CI 0.74–0.90, P = 0.03). Four patients were unresponsive to both of the vaccines. The overall seroprotection rates were 96% in controls and 80% in patients after the whole hepatitis B vaccination series (95% CI 0.04–0.18, P = 0.04). No significant reduction was observed in antibody response among patients and controls during follow-up period.

Conclusions: The rate of seroconversion to the hepatitis B virus- and HAV vaccine is lower in patients with CD than in healthy controls.

See “Vaccinations in Celiac Disease” by Rostami and Rostami Nejad on page 341.

Celiac disease (CD) is an immune-mediated disease, characterized by villous atrophy of the proximal small intestine and malabsorption (1). Human leukocyte antigen (HLA) and non-HLA genes also play a role besides gluten and additional environmental factors in CD pathogenesis (2).

The hepatitis A and B vaccines are both efficacious and safe. The administration of 2 doses of hepatitis A vaccine, given 6 months apart, induces 100% seropositivity in healthy individuals (3–5). The standard 3-dose regimen of hepatitis B vaccines, with the second and third doses being given 1 and 6 months after the initial dose, elicits protective serum titers of anti-HBs (greater than 10 IU/L) in 95% to 99% of healthy infants, children, and young adults (6,7).

The immunogenicity of hepatitis B vaccine in patients with CD has been investigated and found reduced in patients with CD (8–14). HLA phenotype DQ2 is considered the most important genetic marker for unresponsiveness to hepatitis B vaccine (9). Because CD is also strongly associated with the same haplotype, it was suggested that CD may be associated with unresponsiveness or hyporesponsiveness to the hepatitis B virus (HBV) vaccine (8,9). In contrast to hepatitis B vaccine, hepatitis A vaccine was found greatly immunogenic in children with CD (15).

In the present study, the rate of response to the hepatitis A and B vaccines, duration of protection against hepatitis A virus (HAV) and HBV, and the incidence of acute HAV or HBV infections during follow-up were determined in pediatric patients with CD and compared with healthy children.

Back to Top | Article Outline

METHODS

Thirty children with CD diagnosed and followed up between 1999 and 2011 at Division of Pediatric Gastroenterology of Sisli Etfal Training and Research Hospital (Istanbul, Turkey), and 50 healthy age-, sex-, and body mass index–matched controls were evaluated prospectively. The patients and controls who had been vaccinated previously against HAV and HBV and had coexisting disease such as immunodeficiencies, autoimmune disorders including type 1 diabetes mellitus, autoimmune hepatitis, or thyroiditis were excluded. The controls were recruited from healthy children attending our pediatric clinics.

Baseline hepatitis B surface antigen (HBsAg), antibody to hepatitis B surface antigen (anti-HBs), total antibody to hepatitis B core antigen (anti-HBc), anti-HAV immunoglobulin (Ig)G and IgM were examined in all patients and controls. The diagnosis of CD was based on ESPGHAN criteria (16). The histopathological changes of small intestinal biopsies were graded according to a modified Marsh classification (17). Control subjects were also tested for the presence of anti-gliadin antibody, anti-endomysial antibody, and anti-tissue transglutaminase antibody. Informed consents were obtained from all of the parents before the procedures.

When the patients and the controls were susceptible to HAV defined as a negative total HAV antibody, 2 doses of hepatitis A vaccine (720 ELISA units, in 0.5 mL, Havrix, GlaxoSmithKline Biologicals, Rixensart, Belgium) were given 6 months apart intramuscularly into the deltoid muscle. When they were not immune for HBV, 3 doses of hepatitis B vaccine (20 μg, in 0.5 mL, Genhevac B, Sanofi Pasteur Diagnostic, France) were administered at months 0, 1, and 6 intramuscularly. None received the combined hepatitis A/B vaccine. Postvaccination serologic and virologic evaluation was performed 1 month after the last dose of vaccine. Seroconversion was considered if anti-HBs levels were above ≥10 mIU/mL and anti-HAV IgG was positive. Children were followed by testing anti-HAV antibodies, anti-HBs, and anti-HBc titers 1 month after the last dose of vaccinations, 1 month after the booster dose given to cases who did not respond to primary vaccination, and once every year during 7-year follow-up period. The booster dose was administered during a gluten-free diet (GFD). Dietary compliance and CD activity were monitored by measurement of antibodies against transglutaminase and endomysium. No validated questionnaire was used to assess dietary compliance.

Statistical analysis was performed using SPSS 11.0 software (SPSS Inc, Chicago, IL). Results were expressed as means ± standard deviation for quantitative variables and proportions for categorical variables, and percentage with 95% confidence interval (CI) was used to describe the prevalence. The analysis was conducted using Fisher exact test, χ2 test, and analysis of variance to analyze qualitative variables. P values of <0.05 were considered statistically significant.

Back to Top | Article Outline

RESULTS

The age of patients ranged from 1 to 15 years (mean 6.15 ± 4.1), and male:female ratio was 0.87. None of the patients was vaccinated against HAV and HBV before the diagnosis of CD. The control group consisted of 50 healthy children (17 girls and 33 boys, mean age 8.13 ± 1.7 years, range 1–17 years) with negative serological tests for CD.

Among 30 patients who had antibody testing, 14 (46.6%) had natural immunity for hepatitis A, and 16 (53.3%) were susceptible to HAV. Fifteen (30%) of the controls had natural immunity for hepatitis A. All patients and controls were negative for HBsAg, anti-HBc, and anti-HBs before vaccination. Thirty patients without evidence of earlier exposure to hepatitis B received hepatitis B vaccine, whereas 16 (53.3%) of them negative for HAV antibodies received hepatitis A vaccine. All of the controls were vaccinated against HBV and 70% against HAV. The baseline demographic and clinical characteristics of the cases are shown in Table 1.

Table 1
Table 1
Image Tools

No severe adverse reactions or allergy to vaccine components were reported after any dose of the vaccines. Local adverse effects (erythema, pain at injection side, induration) were mild and systemic side effects such as flu-like syndrome and fever occured several days following vaccines in only 3% of the cases in each group.

Twelve patients and 35 controls became positive for anti-HAV antibodies 1 month after hepatitis A vaccination (75% vs 100%, respectively; 95% CI 0.47–0.92, P = 0.007). Seventy percent of the patients and 90% of the controls were anti-HBs–positive 1 month after the last dose of the vaccine (95% CI 0.74–0.90, P = 0.03). The anti-HBs–positive and –negative patients did not differ significantly in age, sex, weight, height, and compliance to GFD (P > 0.05) (Table 2).

Table 2
Table 2
Image Tools

Those with anti-HBs <10 mIU/mL received a booster dose and 3 of them became anti-HBs–positive afterward (Table 3). Only 4 (13.3%; 95% CI 0.05–0.34) patient did not develop seroprotection against both HAV and HBV and also did not give response to the booster dose. Healthy nonresponders to primary vaccination had achieved 60% (3/5) rate of seroconversion after a single booster. Nine anti-HBs–negative patients with CD received a booster during a controlled GFD, and only 3 (33.3%) seroconverted. When compared with CD nonresponders (6/9), the difference was not statistically significant (95% CI 0.46–0.99, P = 0.58).

Table 3
Table 3
Image Tools

Overall seroconversion rates after booster dose were 96% in controls and 80% in patients with CD (95% CI 0.04–0.18, P = 0.04). All of the patients and controls except nonresponders had seroprotective titers of anti-HBs and anti-HAV IgG 7 years after the administration of last doses of vaccines. The sustained response rates were also similar in hepatitis A and B vaccination in both groups (P > 0.05). None of the patients, even nonresponders, became infected with HBV and HAV during follow-up period. All cases are still negative for anti-HAV IgM, HbsAg, and anti-HBc.

Back to Top | Article Outline

DISCUSSION

Approximately 4% to 10% of healthy individuals do not develop an adequate immune response against the hepatitis B vaccine after the primary vaccination series (18,19), and as reported in previous studies, nonresponsiveness was higher in patients with certain chronic illnesses such as chronic liver disease, uremia, inflammatory bowel disease, and CD (8–14,20–23).

It has been reported that HLA-II haplotypes and homozygosis for alleles HLA-B8, DR3, and DQ2 were significantly associated with hepatitis B vaccine nonresponse (24). There is a strong genetic predisposition to CD, associated with haplotypes DQ8 and most specifically with DQ2 (1,9,25,26). The exact pathogenesis of unresponsiveness to hepatitis B vaccine in patients with CD remains unknown. Park et al (12) demonstrated that 53.9% of children with CD did not respond to standard vaccination regimen for HBV; however, the response to other vaccines was not impaired, supporting the role of HLA haplotypes in responding to hepatitis B vaccine. In our study, the response rate of patients with CD to hepatitis B vaccination was found to be significantly lower than that of healthy individuals (70% vs 90%, 95% CI 0.74–0.90, P = 0.03) similarly as reported in previous studies (8–14). The limitation of our study is that HLA haplotypes were not be checked in controls; thus, the response rate could not be compared between the HLA-DQ2–positive and –negative controls and patients with CD.

It was postulated that vaccine nonresponse may not be permanent and compliance to treatment with GFD may improve the immune response to HBV vaccine in celiac children. Leonardi et al (9) demonstrated that the patients with CD who were immunized prospectively during a treatment with GFD developed protective immunity with similar success as healthy individuals. As reported in the study conducted by Ertem et al (11), we found that the response to hepatitis B vaccine in children with CD who were compliant with GFD was not different from that in healthy control group (P = 0.42). We observed a difference in compliance with GFD between responders and nonresponders that only 33.3% noncompliant patients responded to vaccination when compared with 55.5% who did not respond, but it was not significant (P = 0.82).

Zingone et al (27) studied seroprotective levels of anti-HBs during 11 years after primary immunization and a booster dose of vaccine and found that responses were lower in patients with CD compared with healthy individuals. Also in our study, the lower response rates were detected in patients with CD during 7-year follow-up.

Hepatitis A vaccine has been reported to be efficacious in healthy individuals and also in children with cancer, chronic liver disease, and inflammatory bowel disease (28–31). The completion of the 2-dose vaccine induces 100% seropositivity (4,5), and nonresponse is extremely rare (32). Similarly to the study reported by Sari et al (15) in which the response rate to hepatitis A vaccine in children with CD was 78.8% at 1 month and 97% at 7 months, it was found to be 75% at 1 month in our study but did not change during 7-year follow-up period.

In conclusion, we established the low immunologic response of hepatitis A and B vaccines in pediatric patients with CD similarly as reported in the literature. Further studies with larger study groups and longer duration of follow-up are required to clarify, in addition to antibody persistence, if hepatitis A and B vaccinations also induce immune memory that could maintain antibody production and confer lifelong immunity in children with CD.

Back to Top | Article Outline

REFERENCES

1. van Heel DA, West J. Recent advances in coeliac disease. Gut 2006; 55:1037–1046.

2. Plenge RM. Unlocking the pathogenesis of celiac disease. Nat Genet 2010; 42:281–282.

3. Bian GL, Ma R, Dong HJ, et al. Long-term clinical observation of the immunogenicity of inactivated hepatitis A vaccine in children. Vaccine 2010; 28:4798–4801.

4. Bell BP. Hepatitis A vaccine. Semin Pediatr Infect Dis 2002; 13:165–173.

5. Schmidtke P, Habermehl P, Knuf M, et al. Cell mediated and antibody immune response to inactivated hepatitis A vaccine. Vaccine 2005; 23:5127–5132.

6. Assad S, Francis A. Over a decade of experience with a yeast recombinant hepatitis B vaccine. Vaccine 1999; 18:57–67.

7. Venters C, Graham W, Cassidy W. Recombivax-HB: perspectives past, present and future. Expert Rev Vaccines 2004; 3:119–129.

8. Noh KW, Poland GA, Murray JA. Hepatitis B nonresponse and celiac disease. Am J Gastroenterol 2003; 98:2289–2292.

9. Leonardi S, Spina M, Spicuzza L, et al. Hepatitis B vaccination failure in celiac disease: is there a need to reassess current immunization strategies? Vaccine 2009; 27:6030–6033.

10. Nemes E, Lefler E, Szegedi L, et al. Gluten intake interferes with the humoral immune response to recombinant hepatitis B vaccine in patients with celiac disease. Pediatrics 2008; 121:e1570–e1576.

11. Ertem D, Gonen I, Tanidir C, et al. The response to hepatitis B vaccine: does it differ in celiac disease? Eur J Gastroenterol Hepatol 2010; 22:787–793.

12. Park SD, Markowitz J, Pettei M, et al. Failure to respond to hepatitis B vaccine in children with celiac disease. J Pediatr Gastroenterol Nutr 2007; 44:431–435.

13. Balamtekin M, Uslu N, Baysoy G, et al. Responsiveness of children with celiac disease to different hepatitis B vaccination protocols. Turk J Gastroenterol 2011; 22:27–31.

14. Ahishali E, Boztas G, Akyuz F, et al. Response to hepatitis B vaccination in patients with celiac disease. Dig Dis Sci 2008; 53:2156–2159.

15. Sari S, Dalgic B, Basturk B, et al. Immunogenicity of hepatitis A vaccine in children with celiac disease. JPGN 2011; 53:532–535.

16. Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65:909–11.

17. Rostami K, Kerckhaert J, Tiemessen R, et al. Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: disappointing in clinical practice. Am J Gastroenterol 1999; 94:888–894.

18. Alper CA. The human immune response to hepatitis B surface antigen. Exp Clin Immunogenet 1995; 12:171–181.

19. Coates T, Wilson R, Patrick G, et al. Hepatitis B vaccines: assessment of the seroprotective efficacy of two recombinant DNA vaccines. Clin Ther 2001; 23:392–403.

20. Wiedmann M, Libert UG, Oesen U, et al. Decreased immunogenicity of recombinant hepatitis B vaccine in chronic hepatitis C. Hepatology 2000; 31:230–234.

21. Kalyoncu D, Urganci N. Response to hepatitis A and B vaccination in patients with chronic hepatitis C: 8-year follow-up. Paediatr Int Child Health 2012; 32:136–139.

22. Stachowski J, Barth C, Pollok M, et al. Defective antigen presentation by monocytes in ESRD patients not responding to hepatitis B vaccination: impaired HBsAg internalization and expression of ICAM-1 and HLA-DR/la molecules. Mediators Inflamm 1995; 4:49–54.

23. Gisbert JP, Chaparro M, Esteve M. Review article: prevention and management of hepatitis B and C infection in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2011; 33:619–633.

24. Wang C, Tang J, Song W, et al. HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination. Hepatology 2004; 39:978–988.

25. Lundin KEA, Scott H, Fausa O, et al. T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum Immunol 1994; 41:285.

26. Quarsten H, McAdam SN, Jensen T, et al. Staining of celiac disease-relevant T cells by peptide-DQ2 multimers. J Immunol 2001; 167:4861–4868.

27. Zingone F, Morisco F, Zanetti A, et al. Long-term antibody persistence and immune memory to hepatitis B vaccination in adult celiac patients vaccinated as adolescents. Vaccine 2011; 29:1005–1008.

28. Radzikowski A, Banaszkiewicz A, Łazowska-Przeorek I, et al. Immunogenicity of hepatitis A vaccine in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:1117–1124.

29. Ferreira CT, da Silveira TR, Vieira SM, et al. Immunogenicity and safety of hepatitis A vaccine in children with chronic liver disease. J Pediatr Gastroenterol Nutr 2003; 37:258–261.

30. Koksal Y, Yalcin B, Aydin GB, et al. Immunogenicity of hepatitis A vaccine in children with cancer. Pediatr Hematol Oncol 2006; 23:619–624.

31. Fioredda F, Plebani A, Hanau G, et al. Reimmunisation schedule in leukaemic children after intensive chemotherapy: a possible strategy. Eur J Haematol 2005; 74:20–23.

32. Garner-Spitzer E, Kundi M, Rendi-Wagner P, et al. Correlation between humoral and cellular immune responses and the expression of the hepatitis A receptors HAVcr-1 on T cells after hepatitis A re-vaccination in high and low-responder vaccinees. Vaccine 2009; 27:197–204.

Cited By:

This article has been cited 1 time(s).

Journal of Pediatric Gastroenterology and Nutrition
Vaccinations in Celiac Disease
Rostami, K; Nejad, MR
Journal of Pediatric Gastroenterology and Nutrition, 56(4): 341-342.
10.1097/MPG.0b013e31827af217
PDF (66) | CrossRef
Back to Top | Article Outline
Keywords:

celiac disease; childhood; hepatitis A vaccine; hepatitis B vaccine; immunization

Copyright 2013 by ESPGHAN and NASPGHAN

Login

Article Tools

Images

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.

Connect With Us

 

 

Twitter

twitter.com/JPGNonline

 

Visit JPGN.org on your smartphone. Scan this code (QR reader app required) with your phone and be taken directly to the site.