Institutional members access full text with Ovid®

Share this article on:

Nutrition of Very Low Birth Weight Infants Fed Human Milk with or without Supplemental Trace Elements: A Randomized Controlled Trial

Loui, Andrea*; Raab, Andrea§; Wagner, Mathias*; Weigel, Heidrun†; Grüters-Kieslich, Annette‡; Brätter, Peter§; Obladen, Michael*

Journal of Pediatric Gastroenterology & Nutrition: October 2004 - Volume 39 - Issue 4 - pp 346-353
Original Articles-Hepatology and Nutrition

Background: Very low birth weight infants (<1500 g) have high nutritional needs. Deficiencies of minerals, trace elements (especially zinc) may develop as a result of rapid growth, low body stores and low content of these substances in human milk We hypothesized that fortification of human milk might prevent deficiencies.

Methods: Prospective, randomized trial to evaluate mineral, trace element, thyroid status and growth of infants fed human milk fortified with different amounts of calcium, phosphorus and protein, with (BMF) or without (FM 85) trace elements. Sixty-two infants, 1000 to 1499 g birth weight, were randomized. Minerals and trace elements in serum, red blood cells and human milk and alkaline phosphatase activity, TSH, T4 and FT4 in serum were measured once until the fifth day and at 3 and 6 weeks of life. Clinical course and anthropometric measurements were recorded.

Results: Intake of zinc, copper, manganese, calcium, phosphorus and magnesium was higher in the BMF group (P < 0.001). Serum zinc concentrations <0.49 mg/L occurred in 12% of the FM 85 group and 7% of the BMF group at 6 weeks (not significant). Median alkaline phosphatase activity was 436/379 IU/L in the FM 85/BMF group at 6 weeks (P < 0.01). The FM 85 group showed a higher weight gain (P < 0.05), possibly because of higher caloric (P < 0.01) and protein intake (P < 0.05) at 3 weeks.

Conclusions: Zinc deficiency was rare. Elevated intake of calcium, phosphorus and zinc was associated with lower serum alkaline phosphatase activity but did not influence serum zinc concentration.

*Department of Neonatology, Charité Virchow-Hospital; †Department of Neonatology, Charité Mitte; ‡Division of Pediatric Endocrinology, Charité Virchow-Hospital, Humboldt University Berlin; §Department of Molecular Trace Element Research, Hahn-Meitner Institute Berlin, Berlin, Germany.

Received February 8, 2002; accepted June 20, 2004.

This work was granted by NUMICO Research.

Address correspondence and reprint requests to Dr. Andrea Loui, Department of Neonatology, Charité Virchow Hospital, Humboldt University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany. (e-mail: andrea.loui@charite.de).

© 2004 Lippincott Williams & Wilkins, Inc.