Skip Navigation LinksHome > December 2013 - Volume 37 - Issue 4 > Time Course of Functional and Biomechanical Improvements Dur...
Journal of Neurologic Physical Therapy:
doi: 10.1097/NPT.0000000000000020
Research Articles

Time Course of Functional and Biomechanical Improvements During a Gait Training Intervention in Persons With Chronic Stroke

Reisman, Darcy PT, PhD; Kesar, Trisha PT, PhD; Perumal, Ramu PhD; Roos, Margaret DPT, PhD; Rudolph, Katherine PT, PhD; Higginson, Jill PhD; Helm, Erin BS; Binder-Macleod, Stuart PT, PhD

Supplemental Author Material
Collapse Box

Abstract

Background and Purpose:

In rehabilitation, examining how variables change over time can help define the minimal number of training sessions required to produce a desired change. The purpose of this study was to identify the time course of changes in gait biomechanics and walking function in persons with chronic stroke.

Methods:

Thirteen persons who were more than 6 months poststroke participated in 12 weeks of fast treadmill training combined with plantar- and dorsiflexor muscle functional electrical stimulation (FastFES). All participants completed testing before the start of intervention, after 4, 8, and 12 weeks of FastFES locomotor training.

Results:

Peak limb paretic propulsion, paretic limb propulsive integral, peak paretic limb knee flexion (P < 0.05 for all), and peak paretic trailing limb angle (P < 0.01) improved from pretraining to 4 weeks but not between 4 and 12 weeks. Self-selected walking speed and 6-minute walk test distance improved from pretraining to 4 weeks and from 4 to 12 weeks (P < 0.01 and P < 0.05, respectively for both). Timed Up & Go test time did not improve between pretraining and 4 weeks, but improved by 12 weeks (P = 0.24 and P < 0.01, respectively).

Discussion and Conclusions:

The results demonstrate that walking function improves with a different time course compared with gait biomechanics in response to a locomotor training intervention in persons with chronic stroke. Thirty-six training sessions were necessary to achieve an increase in walking speed that exceeded the minimally clinically important difference. These findings should be considered when designing locomotor training interventions after stroke.

Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A63) for more insights from the authors.

© 2013 Neurology Section, APTA.

Login

Article Tools

Share

Follow JNPT on Twitter

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.