Skip Navigation LinksHome > June 2010 - Volume 30 - Issue 2 > Vision and Driving: The United States
Journal of Neuro-Ophthalmology:
doi: 10.1097/WNO.0b013e3181df30d4
State-of-the-Art Reviews

Vision and Driving: The United States

Johnson, Chris A PhD; Wilkinson, Mark E OD

Free Access
Article Outline
Collapse Box

Author Information

Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa.

Collapse Box

Abstract

Minimal visual standards for obtaining driving licensure in the United States principally use 2 measures: visual acuity and visual field. Although research studies have established a correlation between performance on these measures and safe driving, the correlations are weak and mostly retrospective. These measures remain in place in screening centers largely because they (especially visual acuity) are practical. A newer test of visual attention, called the useful field of view, may be more predictive of safe driving than the traditional measures, but it has not been widely applied in licensing bureaus.

Driving is a complex multifaceted activity in which visual performance is a critical feature. Research projects utilizing more detailed and thorough approaches have produced new insights into the role of vision during the driving task and the use of technological advances to improve the driving experience for individuals with visual impairments. We review the research directed toward vision and driving with an emphasis on visual acuity, contrast sensitivity, color vision, and visual fields. Although attention, visual search, decision making, and other cognitive functions are also clearly involved with driving performance, these components are reviewed elsewhere (1,2).

While it is a fundamental responsibility of licensing bodies to identify drivers with impairments that place them at an unacceptable risk for crashes, the decisions they make about licensing must be legally and morally defensible and must not unfairly restrict the mobility of disabled or aging drivers. It is important, therefore, that the licensing criteria for visual fitness be based on scientific evidence establishing their effectiveness and predictive value for unsafe driving performance, particularly for older drivers (1). Surprisingly, there is no rigorous evidence to support the hypothesis that vision screening leads to a reduction in motor vehicle crashes involving older drivers or that a specific cutoff value for vision performance improves safety (2). This seeming conundrum is probably resolved by acknowledging that driving safety depends less on what the driver sees than on how quickly, adequately, and accurately he responds to what is seen (2).

Many review articles have evaluated the relationships among driving performance, vision, decision-making behavior, risk-benefit analysis, and related factors (3-9); but few have incorporated these issues within the context of visual performance, driving demands, and visual and cognitive impairment questions that arise during the course of an eye examination. Following a brief review of visual factors affecting driving, we discuss the issues directly pertinent to eye care providers.

Back to Top | Article Outline

HISTORICAL PERSPECTIVE

The foundations of research on vision and driving can be traced back to the Transactions of the Section on Ophthalmology of the American Medical Association's Seventy Sixth Annual Session in Atlantic City, New Jersey, on May 25-29, 1925 (10). The Committee on Visual Standards for Drivers of Motor Vehicles recommended that driver license applicants demonstrate a visual acuity of at least 20/50 in one eye and at least 20/100 in the fellow eye, with or without glasses. Applicants with visual acuity worse than 20/100 in the poorer eye could be qualified to drive a motor vehicle by a special board under certain circumstances. Diplopia would disqualify an applicant from obtaining a license to operate a motor vehicle.

The next formal report concerning vision standards for driving appeared on October 16, 1937 in the Organization Section of the Journal of the American Medical Association (Vision Standards for Licensure to Operate a Motor Vehicle) (11), which indicated that the 1925 recommendations for a board of physical licensure in each county had proved to be impracticable and had therefore not been embodied into law or practice. The report also indicated that standards of good vision necessary for efficient operation of a motor vehicle could not be arbitrarily fixed because the problem of safety also depended on factors such as the driver's natural aptitude, experience, and general mental and physical fitness. The lack of good vision might be compensated for by a high degree of efficiency in aptitude, experience, and mental and physical fitness. The report modified the vision standard for driving licensure to 20/40 or better in one eye (with or without glasses) and 20/100 or better in the fellow eye (with or without glasses). It recommended a horizontal extent of the visual field of at least 45° to both sides of the point of fixation; a binocular single vision; and the ability to distinguish red, green, and yellow. A limited driving license could be obtained with a visual acuity of at least 20/65 in the better eye, a field of vision extending at least 125° horizontally in one eye, and the absence of diplopia. Personal qualities that could compensate for minor defects of vision would have to be highly rated in those to whom a limited license was to be issued.

The 1937 report was followed by investigations performed by Burg (12-15) in landmark studies published in the 1960s. These studies evaluated a large population of California drivers on an extensive battery of vision, reaction time, and decision-making tests. This work served as a basis for establishing vision requirements for a driving license, although many questions arose concerning the individuals selected for inclusion in the study, the methodology used in some of the test procedures, and the analysis procedures used in evaluation of the data. Burg's work (12-15) was a retrospective study of the association of vision and cognitive properties with driving accidents and convictions; no validation or prospective evaluations were performed. Subsequent studies of vision and driving have explored the influence of visual impairment on driving, the use of devices to accommodate disabilities, and cognitive and decision-making aspects of driving (1,2,7,16-93). Using driving simulators, population-based studies, closed road tracks, and retrospective reviews of driving accidents and convictions, they have provided more sophisticated information on visual performance and driving behavior, as described in a later section of this article. The factors most often considered are visual acuity, contrast sensitivity, visual fields, and color vision.

Despite much research on these topics, there remain significant differences in vision requirements for driving licensure throughout the world. In fact, each of the 50 states in the United States has its own requirements.

Back to Top | Article Outline

VISUAL FUNCTIONS AND OTHER FACTORS RELATED TO DRIVING

Most studies indicate that visual acuity, contrast sensitivity, visual fields, and color vision have the strongest relationship to driving performance (12-43). We will provide a summary of results from these investigations, and direct the interested reader to the more comprehensive reviews (6-11). In the past, most research was directed at establishing the relationship between vision and driving among individuals with normal vision. Only recently, there have been efforts toward evaluating the driving abilities of individuals with vision impairments (1,44-55).

Back to Top | Article Outline
Visual Acuity

Visual acuity is the most universal vision requirement for obtaining a driving license. Tests of visual acuity can be administered rapidly with a standardized test procedure by personnel with minimal visual testing skills. It is acknowledged as critical for interpreting traffic signs and detecting road hazards. In the United States, most jurisdictions require an unaided or best-corrected visual acuity of 20/40 in the better eye (7). Most of the signage and other roadside information have been designed to be read by individuals with 20/40 or better visual acuity who are operating a motor vehicle at or below the speed limit.

A number of studies have evaluated the consequences of driving with reduced visual acuity produced by cataract or other ocular and neurologic diseases or by artificially degrading vision by means of lenses or translucent devices in persons with normal visual acuity (46,49,50,53-55).These studies have mostly been performed retrospectively by reviewing visual acuity status and traffic accidents and convictions in the general population, the elderly, the young, and those with physical or mental impairments. Prospective studies have measured driving performance on a closed road track or in a driving simulator (1,46-55). Reductions in visual acuity produce impairments in certain aspects of driving related to specific driving tasks, such as recognition of road signs, road hazards, highway markings, and objects entering the roadway (29).

Back to Top | Article Outline
Contrast Sensitivity

Evans and Ginsburg (17) and Ginsburg (18) have reported that contrast sensitivity is an important factor in being able to distinguish the legibility of highway signs and other properties of functional vision that are associated with driving, such as recognition of road signs, hazards, traffic signals, and indicator markers. In bad weather and in night driving, highway signs, road hazards, animals, and pedestrians have low contrast. For this reason, many studies have incorporated the detection and discrimination of low-contrast objects as part of their driving research (44).

Back to Top | Article Outline
Night Vision

At night, highways and intersections are not as well delineated. The span of useable vision is smaller due to nonuniform lighting of the highway and the short distance for which the headlights of a vehicle can illuminate the roadway. Paradoxically, drivers tend to maintain nighttime driving speeds at nearly the same level as daytime driving speeds (56-60). Accidents are more than twice as frequent at night (56-60). Regrettably, there has been very little useful research on night time driving.

Back to Top | Article Outline
Visual Fields and Attention

Early investigations did not find a meaningful relationship between peripheral vision and accident and conviction reports (13). Among the many factors responsible for this lack of a relationship are the low prevalence of visual field loss in the general population; self-restriction of driving by individuals with ocular or neurologic disorders; the use of peripheral vision test equipment with high false-positive and false-negative rates; and the lack of reproducibility, confirmation, and validation of test findings (19).

But with a visual field instrument of known performance characteristics, a study (19) finally found that drivers with significant visual field loss in both eyes had more than twice as many accidents and convictions as drivers with normal visual fields or loss in only one eye. Subsequently, many studies reported a relationship between visual field loss and driving performance (20-31). When the binocular visual field was reduced to 50°-60° in diameter, impairments in driving performance were noted (19,20,22). However, more recent investigations have found that even relatively minor amounts of visual field loss are related to deficits in driving performance (22,23).

The devices that perform clinical visual field testing rely on the subject's ability to detect a single stimulus superimposed on a uniform background. Because driving is much more complex, investigators (32-37) have developed a test known as the useful field of view (UFOV), which combines peripheral target detection with measurements of reaction time, the ability to perform multiple tasks (including simultaneous central and peripheral target recognition), and the ability to localize targets and distinguish one from another (see Anticipated Future Developments). The intent of the UFOV test is to provide a more powerful surrogate of the visual and cognitive tasks encountered during driving. Studies (32-37) have verified that this test is useful in identifying task performance difficulties associated with driving impairments.

Back to Top | Article Outline
Color Vision

The role of color vision in safe driving is complex because deficient color vision can be congenital or acquired, stable or progressive, partial or complete, and affect primarily red (protan), green (deutan), blue (tritan), or all color sensitive visual mechanisms. Moreover, color is not the only visual attribute used to distinguish a critical visual target. Individuals with red (protan) deficiencies have greater difficulty seeing red traffic signals and automobile tail lights at night, thereby producing a higher risk of traffic accidents (39-41). Individuals with protan (red) and deutan (green) deficits have greater difficulty recognizing traffic signal colors and the conspicuity of signs and signals (39,41-43). Many sunglass manufacturers do not adhere to the recommended specifications for tint colorations and produce spectacles that create significant difficulties for color-deficient observers (38).

Although color vision performance is not a component of the standard for obtaining a standard driving license in the United States, it is a component for obtaining a commercial vehicle driving license. To obtain a US commercial driving license, the driver must be able to distinguish traffic control signals and devices showing red, green, and amber colors. Some European countries use it as a component for obtaining a standard driving license.

Back to Top | Article Outline
Other Factors

Even if visual modalities are intact, their integration with auditory, memory, and other sensory information can be an especially difficult task for youthful, elderly, or neurologically impaired individuals. This lack of integration may lead to an increase in vehicular accidents (61-64). For example, studies have shown that cellular telephone use during driving disrupts sensory tasks and driving performance (61-64).

The effect of instruction, rehabilitation, and the use of assistive devices on driving performance has been controversial (11,24,25,30,44,48-50,54,55,58,61-64,70,71,77,83,92). For example, the use of bioptic telescopes by drivers who are visually impaired has been advocated by some vision specialists but considered hazardous by others (65-67). Among those who favor them, the assumption is that these devices will be used according to the instructions provided by the manufacturer and the eye care specialist prescribing them. Although there is evidence that drivers use them mostly to spot signs (65-67), they will experience inattention blindness as they switch their fixation from the carrier lens to the bioptic. A talking global position system might be a safer option for older drivers with visual impairments. Adaptive cruise control, lane alert warnings, and self-parking cars may also be a boon to drivers with visual impairments, but studies are yet to be forthcoming on these issues.

Back to Top | Article Outline
Aging

Driving accidents and convictions are higher in youths and in the elderly (2,68-77), but there are large individual differences. No consistent factors, such as cognitive decision making, attention, driving experience, or training programs, have been identified.

Back to Top | Article Outline
Stereopsis

Investigations of stereopsis and driving performance (78-80) have failed to disclose any important impact of reduced function.

Back to Top | Article Outline

TRADITIONAL VISION TESTING

Visual Acuity

Visual acuity has traditionally been evaluated by reading a series of progressively smaller letters or symbols on a chart. For the most part, this procedure has been shown to be effective in providing a quick, accurate, and easily administered test that is relevant to the driving task. The methodology for visual acuity assessment has been standardized, and it is unlikely that meaningful improvements to the procedure will be achieved through more extensive research. This procedure therefore appears to be adequate for vision screening for a driving license.

Back to Top | Article Outline
Contrast Sensitivity

Contrast sensitivity is measured in many different ways with no consensus as to which method is most appropriate for driving. At the present time, contrast sensitivity is regarded as an important visual factor for driving, but the use of a specific screening procedure has not yet been achieved. Moreover, a determination of the amount and quality of information that it can provide beyond visual acuity needs further investigation.

Back to Top | Article Outline
Visual Fields

Visual field testing is time consuming. Rapid screening techniques such as the Humphrey matrix have been able to generate a screening procedure that takes 20-30 seconds per eye in those without defects and 60 seconds per eye in those with defects. However, this procedure only evaluates the central 30° radius of the visual field, thereby limiting its utility for evaluation of the full visual field. There are a number of other rapid screening techniques, but they have not been subjected to a rigorous investigation in this setting.

Back to Top | Article Outline

CURRENT ISSUES IN VISION AND DRIVING

As of 2004, all drivers licensed in Florida who are 80 years and older are required to meet a minimum visual acuity requirement to renew their driver licenses. They are required to pass a letter acuity test of 20/40 or better at the time of renewal or provide a certificate from a licensed allopathic physician, osteopathic physician, or optometrist demonstrating that they have passed a vision test within the past year. When comparing prelaw and postlaw periods, the all-cause fatality rate, adjusted for age, race, and sex, among all aged drivers increased by 6% but decreased by 17% among drivers aged 80 years and older (88). Prior research done by Shipp and others (89-93) had suggested that states with mandated visual acuity tests have lower motor vehicle collision fatality rates among older individuals. Grabowski et al (88) found that in-person license renewal was related to a significantly lower fatality rate among the most elderly drivers. More stringent state licensure policies related to vision or road tests and more frequent license renewal cycles were not independently associated with additional benefits. After controlling for middle-aged daytime driver deaths, the only policy related to significantly lower driving fatality rates was the requirement for in-person license renewal. License renewal included a visual acuity test or a referral to a medical practitioner for further medical screening in some states.

Back to Top | Article Outline

PHYSICIAN REPORTING OF VISUALLY IMPAIRED DRIVERS

Physicians working in jurisdictions where reporting a patient who is at high risk for a motor vehicle accident is not mandatory still have a moral and ethical obligation to report in order to preserve patient and public safety (83,84). The Duty to Warn is a legal rationale intended to provide a means of protecting the patient from an unreasonable risk of harm. Failure to warn patients of conditions that create a risk of injury will be upheld as a cause of action against eye care providers when it can be shown that the failure to warn is the proximate cause of an injury. Patients may argue that they had insufficient warning of their impairment, and because of their impairment, their operation of a motor vehicle or other machinery resulted in an injury. Thus, patients whose vision no longer legally qualifies them to operate a motor vehicle should be warned not to drive and a notation to this effect should be entered into the patient's record (86,87).

In 1999, the American Medical Association (AMA) House of Delegates approved a recommendation that calls on doctors to breach patient confidentiality for the good of both the patient and the society. The AMA stated that it is desirable and ethical for physicians to notify the Department of Motor Vehicles or an equivalent agency if an impaired patient fails to restrict driving appropriately (87).

Mandatory reporting concerns include the question of relative benefit, and different states have varying legal opinions about mandatory reporting. If mandatory reporting detours someone from confiding or getting necessary care, because he or she fears losing driving privileges, then reporting statutes could backfire, creating more hazardous drivers. There has been a long-standing controversy as to whether driving is a privilege or a right. Driving is subject to reasonable regulations in the interest of public safety and welfare. The suspension or revocation of an operator's license is not intended as a punishment to the driver but is designed solely for the protection of the public. The AMA Physician's Plan for Older Drivers' Safety (2003) (3) states that every physician (we would include optometrists) should assess risk factors for older patients who drive (4). For those individuals at risk of unsafe driving, the practitioner should recommend a formal assessment of vision, cognition, and motor skills and also refer for a road test when appropriate.

Back to Top | Article Outline

ANTICIPATED FUTURE DEVELOPMENTS

The UFOV is a specialized visual field test that has been developed for evaluation of driving and peripheral vision (32-37). It differs from other tests of peripheral visual function by incorporating measures of reaction time, stimulus localization, simultaneous central and peripheral visual tasks (multitasking), target identification, and complex decision making. The UFOV provides a means of evaluating the driver's ability to perform multiple tasks accurately and quickly to simulate the driving task. Studies performed with this procedure indicate that it correlates with driving performance (32-37). This procedure is now being used by a greater number of health care professionals who are concerned with driving and other mobility tasks; but careful research has been limited to only a few laboratories, and there is a strong need for additional work. Currently, the UFOV test is considered too costly and time consuming to be used for screening on a widespread population basis.

The rapid increase in vision and driving research has generated a number of questions as to the impact on safe driving of multisensory integration of information and assimilation of sensory, cognitive, decision making, and attentional properties. Also, important are validation of laboratory studies when applied to population implementation and public policy, rehabilitation and training regimens to compensate for disabilities, evidence-based guidelines, and legal liabilities. No single group is capable of addressing all relevant issues, and a consolidation of this information through meta-analysis or overviews can sometimes be difficult. The Cochrane Report (69) provides a comprehensive objective assessment of current findings and directed efforts primarily toward identifying the importance of vision screening for prediction of traffic accidents and fatalities. The authors concluded that 1) no studies to date met their inclusion criteria (randomized controlled trial before and after studies comparing vision screening to nonscreening of drivers aged 55 and older), 2) there is insufficient evidence to assess the effect of vision screening on elderly drivers, and 3) valid and reliable vision screening tools need to be developed to properly evaluate this topic in a more thorough fashion.

Back to Top | Article Outline

CONCLUSIONS

Our knowledge concerning the relationship between visual performance and driving has increased in recent years. Highly competent laboratories and research teams have conducted a number of research studies and evaluations. However, policy decisions, accuracy and efficiency of testing large populations, interpretation of test results, legal ramifications, and risk assessment currently determine the requirements for a driving license. A procedure that is highly effective in a research project has not yet been found applicable for general use in screening drivers.

The United Kingdom and other countries have adopted a uniform vision standard for driving licensure. The United States has not, with the result that there are 50 standards of visual performance needed to obtain a driving license. There are also meaningful variations in the licensing requirements among different countries in Europe, Asia, and South America. We propose that the United States adopt a national vision standard for driving personal vehicles similar to that of the United Kingdom. Such a standard would place the responsibility on drivers rather than eye care providers to know if they are visually qualified to drive, and enforcement would be conducted by departments of motor vehicles and law enforcement agencies. This approach would also remove concerns about mandatory reporting of impaired drivers by health care professionals. It would be an application of the principle used in qualifying for a commercial driving license.

Back to Top | Article Outline

REFERENCES

1. Keay L, Munoz B, Turano KA, Hassan SE, Munro CA, Duncan DD, Baldwin K, Jasti S, Gower EW, West SK. Visual and cognitive deficits predict stopping or restricting driving: the Salisbury Eye Evaluation Driving Study (SEEDS). Invest Ophthalmol Vis Sci. 2009;50:107-113.

2. Ross LA, Anstey KJ, Kiely KM, Windsor TD, Byles JE, Luszcz MA, Mitchell P. Older drivers in Australia: trends in driving status and cognitive and visual impairment. J Am Geriatr Soc. 2009;57:1868-1873.

3. Bohensky M, Charlton J, Odell M, Keeffe J. Implications of vision testing for older licensing. Traffic Inj Prev. 2008;9:304-313.

4. Colenbrander A, De Laey JJ. Vision Requirements for Driving Safety with Emphasis on Individual Assessment. Report prepared for the International Council of Ophthalmology at the 30th World Ophthalmology Congress. Sao Paulo, Brazil, February 2006. Available at: http://www.icoph.org/pdf/visionfordriving.pdf. Accessed March 22, 2010.

5. Charman WN. Visual standards for driving. Ophthalmic Physiol Opt. 1985;5:211-220.

6. Charman WN. Vision and driving-a literature review and commentary. Ophthalmic Physiol Opt. 1997;17:371-391.

7. Keltner JL, Johnson CA. Visual function and driving safety. Arch Ophthalmol. 1992;110:1697-1698.

8. Brinig MF, Wilkinson ME, Daly JM, Jogerst GJ, Stone EM. Vision standards for licensing and driving. Optometry. 2007;78:439-445.

9. Casson EJ, Racette L. Vision standards for driving in Canada and the United States. A review for the Canadian Ophthalmological Society. Can J Ophthalmol. 2000;35:192-203.

10. Behrens C, Finnoff WC, Gradle HS, Posey WC. Report of committee on visual standards for drivers of motor vehicles. Trans Sect Ophthalmol Am Med Assoc. 1925;76:361-362.

11. Black NM, Gradle HS, Snell AC. Visual standards for licensure to operate motor vehicles: preliminary report of special committee at Atlantic City session. J Am Med Assoc. 1937;109:61B-63B.

12. Burg A. Visual acuity as measured by dynamic and static tests: a comparative evaluation. J Appl Psychol. 1966;50:460-466.

13. Burg A. Lateral visual field as related to age and sex. J Appl Psychol. 1968;52:10-15.

14. Burg A. The Relationship Between Vision Test Scores and Driving Record: General Findings. Report 67-24. Los Angeles, CA: Department of Engineering, University of California; 1967.

15. Burg A. Vision Test Scores and Driving Record: Additional Findings. Report 68-27. Los Angeles: Department of Engineering, University of California; 1968.

16. Wood JM, Owens DA. Standard measures of visual acuity do not predict drivers' recognition performance under day or night conditions. Optom Vis Sci. 2005;82:698-705.

17. Evans DW, Ginsburg AP. Contrast sensitivity predicts age-related differences in highway sign discriminability. Hum Factors. 1985;27:637-642.

18. Ginsburg AP. Contrast sensitivity and functional vision. Int Ophthalmol Clin. 2003;43:5-15.

19. Johnson CA, Keltner JL. Incidence of visual field loss in 20,000 eyes and its relationship to driving performance. Arch Ophthalmol. 1983;101:371-375.

20. Owen VM, Crabb DP, White ET, Viswanathan AC, Garway-Heath DF, Hitchings RA. Glaucoma and fitness to drive: using binocular visual fields to predict a milestone to blindness. Invest Ophthalmol Vis Sci. 2008;49:2449-2455.

21. Hassan SE, Turano KA, Monuz B, Munro C, Roche KB, West SK. Cognitive and vision loss affects the topography of the attentional visual field. Invest Ophthalmol Vis Sci. 2008;49:4672-4678.

22. McKean-Cowdin R, Varma R, Wu J, Hays RD, Azen SP; Los Angeles Latino Eye Study Group. Severity of visual field loss and health-related quality of life. Am J Ophthalmol. 2007;143:1013-1023.

23. Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC. Risk of falls and motor vehicle collisions in glaucoma. Invest Ophthalmol Vis Sci. 2007;48:1149-1155.

24. Racette L, Casson EJ. The impact of visual field loss on driving performance: evidence from on-road driving assessments. Optom Vis Sci. 2005;82:668-674.

25. Bowers A, Peli E, Elgin J, McGwin G, Owsley C. On-road driving with moderate visual field loss. Optom Vis Sci. 2005;82:657-667.

26. Petzold A, Plant GT. Central and paracentral visual field defects and driving abilities. Ophthalmologica. 2005;219:191-201.

27. Szlyk JP, Mahler CL, Seiple W, Edward DP, Wilensky JT. Driving performance of glaucoma patients correlates with peripheral visual field loss. J Glaucoma. 2005;14:145-150.

28. Crabb DP, Fitzke FW, Hitchings RA, Viswanathan AC. A practical approach to measuring the visual field component of fitness to drive. Br J Ophthalmol. 2004;88:1191-1196.

29. Wood JM, Troutbeck R. Effect of restriction of the binocular visual field on driving performance. Ophthalmic Physiol Opt. 1992;12:291-298.

30. McKnight AJ, Shinar D, Hilburn B. The visual and driving performance of monocular and binocular heavy-duty truck drivers. Accid Anal Prev. 1991;23:225-237.

31. North RV. The relationship between the extent of visual field and driving performance - a review. Ophthalmic Physiol Opt. 1985;5:205-210.

32. Novack TA, Banos JH, Alderson AL, Schneider JJ, Weed W, Blankenship J, Salisbury D. UFOV performance and driving ability following traumatic brain injury. Brain Inj. 2006;20:455-461.

33. Myers RS, Ball KK, Kalina TD, Roth DL, Goode Kt. Relation of useful field of view and other screening tests to on-road driving performance. Percept Mot Skills. 2000;91:279-290.

34. Crundall D, Underwood G, Chapman P. Driving experience and the functional field of view. Perception. 1999;28:1075-1087.

35. Ball K, Owlsey C, Sloane ME, Roenker DL, Bruni JR. Visual attention problems as a predictor of vehicle crashes in older drivers. Invest Ophthalmol Vis Sci. 1993;34:3110-3123.

36. Okonkwo OC, Crowe M, Wasley VG, Ball K. Visual attention and self-regulation of driving among older adults. Int Psychogeriatr. 2008;20:162-173.

37. Ball K, Owsley C. The useful field of view test: a new technique for evaluating age-related declines in visual function. J Am Optom Assoc. 1993;64:71-79.

38. Dain SJ, Wood JM, Atchison DA. Sunglasses, traffic signals, and color vision deficiencies. Optom Vis Sci. 2009;86:e296-e305.

39. Atchison DA, Pedersen CA, Dain SJ, Wood JM. Traffic signal color recognition is a problem for both protan and deutan color-vision deficients. Hum Factors. 2003;45:495-503.

40. Matsumoto ER, Johnson CA, Post RB. Effect of X-Chrom lens wear on chromatic discrimination and stereopsis in color-deficient observers. Am J Optom Physiol Opt. 1983;60:297-302.

41. O'Brien KA, Cole BL, Maddocks JD, Forbes AB. Color and defective color vision as factors in the conspicuity of signs and signals. Hum Factors. 2002;44:665-675.

42. Cole BL. Protan color vision deficiency and road accidents. Clin Exp Optom. 2002;85:246-253.

43. Vingrys AJ. The case against protan drivers holding professional driving licenses. Clin Exp Optom. 2002;85:46-48.

44. Uc EY, Rizzo M, Anderson SW, Dastrup E, Sparks JD, Dawson JD. Driving under low-contrast visibility conditions in Parkinson disease. Neurology. 2009;73:1103-1110.

45. Ramulu PY, West SK, Munoz B, Jampel HD, Friedman DS. Driving cessation and driving limitation in glaucoma: the Salisbury Eye Evaluation Project. Ophthalmology. 2009;116:1846-1853.

46. Marrington SA, Horswill MS, Wood JM. The effect of simulated cataracts on drivers' hazard perception ability. Optom Vis Sci. 2008;85:1121-1127.

47. Kotecha A, Spratt A, Viswanathan A. Visual function and fitness to drive. Br Med Bull. 2008;87:163-174.

48. Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, CHauhan BC. Glaucoma and on-road driving performance. Invest Ophthalmol Vis Sci. 2008;49:3035-3041.

49. Stav WB, Justiss MD, McCarthy DP, Mann WC, Lanford DN. Predictability of clinical assessments for driving performance. J Safety Res. 2008;39:1-7.

50. Wood JM, Carberry TP. Bilateral cataract surgery and driving performance. Br J Ophthalmol. 2006;90:1277-1280.

51. Ballantyne B. Glaucopsia: an occupational ophthalmic hazard. Toxicol Rev. 2004;23:83-90.

52. Wood JM, Garth D, Grounds G, McKay P, Mulvahil A. Pupil dilatation does affect some aspects of daytime driving performance. Br J Ophthalmol. 2003;87:1387-1390.

53. Wood JM. Age and visual impairment decrease driving performance as measured on a closed-road circuit. Hum Factors. 2002;44:482-494.

54. Wilkinson ME. Driving with a vision impairment. Insight. 1998;23:48-52.

55. Wood JM, Troutbeck R. Effect of visual impairment on driving. Hum Factors. 1994;36:476-487.

56. Tyrrell RA, Wood JM, Chaparro A, Carberry TP, Chu BS, Marszalek RP. Seeing pedestrians at night: visual clutter does not mask biological motion. Accid Anal Prev. 2009;41:506-512.

57. Owens DA, Wood JM, Owens JM. Effects of age and illumination on night driving: a road test. Hum Factors. 2007;49:1115-1131.

58. Brabyn JA, Schneck ME, Lott LA, Haegerstrom-Portnoy G. Night driving self-restriction: vision function and gender differences. Optom Vis Sci. 2005;82:755-764.

59. Andre J, Owens DA. The twilight envelope: a user-centered approach to describing roadway illumination at night. Hum Factors. 2001;43:620-630.

60. Leibowitz HW, Owens DA, Tyrrell RA. The assured clear distance ahead rule: implications for nighttime traffic safety and the law. Accid Anal Prev. 1998;30:93-99.

61. Vivoda JM, Eby DW, St. Louis RM, Kostynuik LP. Cellular phone use while driving at night. Traffic Inj Prev. 2008;9:37-41.

62. Chisholm SL, Caird JK, Lockhart J. The effects of practice with MP3 players on driving performance. Accid Anal Prev. 2008;40:704-713.

63. Caird JK, Willness CR, Steel P, Scialfa C. A meta-analysis of the effects of cell phones on driver performance. Accid Anal Prev. 2008;40:1282-1293.

64. Maples WC, DeRosier W, Hoenes R, Bendure R, Moore S. The effects of cell phone use on peripheral vision. Optometry. 2008;79:36-42.

65. Bowers AR, Apfelbaum DH, Peli E. Bioptic telescopes meet the needs of drivers with moderate visual acuity loss. Invest Ophthalmol Vis Sci. 2005;46:66-74.

66. Bailey IL. Bioptic telescopes. Arch Ophthalmol. 1985;103:13-14.

67. Fonda G. Bioptic telescopic spectacle is a hazard for operating a motor vehicle. Arch Ophthalmol. 1983;101:1907-1908.

68. Dawson JD, Anderson SW, Uc Ey, Dastrup E, Rizzo M. Predictors of driving safety in early Alzheimer disease. Neurology. 2009;72:521-527.

69. Subzwari S, Desapriya E, Babul-Wellar S, Pike I, Turcotte K, Rajabali F, Kinney J. Vision screening of older drivers for preventing road traffic injuries and fatalities. Cochrane Database Syst Rev. 2009;CD006252.

70. Wood JM, Anstey KJ, Kerr GK, Lacherez PF, Lord S. A multidomain approach for predicting older driver safety under in-traffic road conditions. J Am Geriatr Soc. 2008;56:986-993.

71. Rubin GS, Ng ES, Bandeen-Roche K, Keyl PM, Freeman EE, West SK. A prospective, population-based study for the role of visual impairment in motor vehicle crashes among older drivers: the SEE study. Invest Ophthalmol Vis Sci. 2007;48:1483-1491.

72. Freeman EE, Munoz, Turano KA, West SK. Measures of visual function and time to driving cessation in older adults. Optom Vis Sci. 2005;82:765-773.

73. Chaparro A, Wood JM, Carberry T. Effects of age and auditory and visual dual tasks on closed-road driving performance. Optom Vis Sci. 2005;82:747-754.

74. Wood JM. Aging, driving and vision. Clin Exp Optom. 2002;85:214-220.

75. Owsley C. Vision and driving in the elderly. Optom Vis Sci. 1994;71:727-735.

76. Keltner JL, Johnson CA. Visual function, driving safety and the elderly. Ophthalmology. 1987;94:1180-1188.

77. McGregor LN, Chaparro A. Visual difficulties reported by low-vision and nonimpaired older adult drivers. Hum Factors. 2005;47:469-478.

78. Tijtgat P, Mazyn L, DeLaey C, Lenoir M. The contribution of stereo vision to the control of braking. Accid Anal Prev. 2008;40:719-724.

79. Bauer A, Dietz K, Kolling G, Hart W, Schiefer U. The relevance of stereopsis for motorists: a pilot study. Grafes Arch Clin Exp Ophthalmol. 2001;239:400-406.

80. Fleck R, Kolling GH. Two new stereotests for long distance: examination of stereopsis with regard to the permission of driving. Ger J Ophthalmol. 1996;5:53-59.

81. Johnson CA. Vision requirements for driver's license examiners. Optom Vis Sci. 2005;82:779-789.

82. Higgins KE, Wood JM. Predicting components of closed road driving performance from vision tests. Optom Vis Sci. 2005;82:647-656.

83. Mallon K, Wood JM. Occupational therapy assessment of open-road driving performance: validity of directed and self-directed navigational instructional components. Am J Occup Therapy. 2004;58:279-286.

84. Trobe JD. Test of divided visual attention predicts automobile crashes among older adults. Arch Ophthalmol. 1998;116:665.

85. Hills BL. Vision, visibility and perception in driving. Perception. 1980;9:183-216.

86. Classe, JG. Clinicolegal aspects of practice: liability for ocular urgencies and emergencies. Southern JOptom. 1986;4:51-58.

87. Foubister V. To tell or not-physician's reports on patients driving impaired. American Medical News. November 22, 1999:8.

88. Grabowski DC, Campbell CM, Morrisey, MA. Elderly licensure laws and motor vehicle fatalities. JAMA. 2004;291:2840-2846.

89. Levy DT, Vernick JS, Howard KA. Relationship between driver's license renewal policies and fatal crashes involving drivers 70 years or older. JAMA. 1995;274:1026-1030.

90. McGwin G Jr, Sarrels SA, Griffin R, Owsley C, Rue LW III. The impact of a vision screening law on older driver fatality rates, Arch Ophthalmol. 2008;126:1544-1547.

91. Molnar FJ, Marshall SC, Man-Son-Hing M, Wilson KG, Byszewski AM, Stiell I. Acceptability and concurrent validity of measures to predict older driver involvement in motor vehicle crashes: an Emergency Department pilot case-control study. Accid Anal Prev. 2007;39:1056-1063.

92. Owsley C, McGwin G Jr. Vision impairment and driving, Surv Ophthalmol. 1999;43:535-550.

93. Shipp MD. Potential human and economic cost-savings attributable to vision testing policies for driver license renewal, 1989-1991 Optom Vis Sci. 1998;75:103-118.

Cited By:

This article has been cited 3 time(s).

Traffic Injury Prevention
Vision and Night Driving Abilities of Elderly Drivers
Gruber, N; Mosimann, UP; Muri, RM; Nef, T
Traffic Injury Prevention, 14(5): 477-485.
10.1080/15389588.2012.727510
CrossRef
Jama Ophthalmology
Discussing Driving Concerns With Older Patients II. Vision Care Providers' Approaches to Assessment
Musch, DC; Janz, NK; Leinberger, RL; Niziol, LM; Gillespie, BW
Jama Ophthalmology, 131(2): 213-218.
10.1001/2013.jamaophthalmol.106
CrossRef
Journal of Neuro-Ophthalmology
The Vision and Driving Challenge
Owsley, C
Journal of Neuro-Ophthalmology, 30(2): 115-116.
10.1097/WNO.0b013e3181e2d045
PDF (64) | CrossRef
Back to Top | Article Outline

© 2010 Lippincott Williams & Wilkins, Inc.

Login