Skip Navigation LinksHome > December 2011 - Volume 59 - Issue 8 > Implementation and Impact of a Consensus Diagnostic and Mana...
Journal of Investigative Medicine:
doi: 10.231/JIM.0b013e318231db4d
Original Articles

Implementation and Impact of a Consensus Diagnostic and Management Algorithm for Complicated Pneumonia in Children

Pillai, Dinesh MD*†**; Song, Xiaoyan PhD§**; Pastor, William MA, MPH; Ottolini, Mary MD, MPH∥**; Powell, David MD¶**; Wiedermann, Bernhard L. MD, MA§**; DeBiasi, Roberta L. MD§**

Supplemental Author Material
Collapse Box

Abstract

Introduction: Variable treatment exists for children with bacterial pneumonia complications such as pleural effusion and empyema. Subspecialists at an urban academic tertiary children’s hospital created a literature-based diagnosis and management algorithm for complicated pneumonia in children. We proposed that algorithm implementation would reduce use of computed tomography (CT) for diagnosis of pleural infection, thereby decreasing radiation exposure, without increased adverse outcomes.

Materials and Methods: A cross-sectional study was undertaken in children (3 months to 20 years old) with principal or secondary diagnosis codes for empyema and/or pleural effusion in conjunction with bacterial pneumonia. Study cohorts consisted of subjects admitted 15 months before (cohort 1, n = 83) and after (cohort 2, n = 87) algorithm implementation. Data were collected using clinical and financial data systems. Imaging studies and procedures were identified using Current Procedural Terminology codes. Statistical analysis included χ2 test, linear and ordinal regression, and analysis of variance.

Results: Age (P = 0.56), sex (P = 0.30), diagnoses (P = 0.12), and severity level (P = 0.84) were similar between cohorts. There was a significant decrease in CT use in cohort 2 (cohort 1, 60% vs cohort 2, 17.2%; P = 0.001) and reduction in readmission rate (7.7% vs 0%; P = 0.01) and video-assisted thoracoscopic surgery procedures (44.6% vs 28.7; P = 0.03), without concomitant increases in vancomycin use (34.9% vs 34.5%; P = 0.95) or hospital length of stay (6.4 vs 7.6 days; P = 0.4). Among patients who received video-assisted thoracoscopic surgery drainage (n = 57), there were no significant differences between cohorts in median time from admission to video-assisted thoracoscopic surgery (2 days; P = 0.29) or median duration of chest tube drainage (3 vs 4 days; P = 0.10). There was a statistically nonsignificant trend for higher rate of pathogen identification in cohort 2 (cohort 1, 33% vs cohort 2, 54.1%; P = 0.12); Streptococcus pneumonia was the most commonly identified pathogen in both cohorts (37.5% vs 27%; P = 0.23).

Discussion: Implementation of an institutional complicated pneumonia management algorithm reduced CT scan use/radiation exposure, VATS procedures, and readmission rate in children with a diagnosis of pleural infection, without associated increases in length of stay or vancomycin use. This algorithm provides the framework for future prospective quality improvement studies in pediatric patients with complicated pneumonia.

© 2011 American Federation for Medical Research

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.