Skip Navigation LinksHome > June 2010 - Volume 58 - Issue 5 > Cigarette Smoke Alters Tissue Inhibitor of Metalloproteinase...
Journal of Investigative Medicine:
doi: 10.231/JIM.0b013e3181db874e
Original Articles

Cigarette Smoke Alters Tissue Inhibitor of Metalloproteinase 1 and Matrix Metalloproteinase 9 Levels in the Basolateral Secretions of Human Asthmatic Bronchial Epithelium In Vitro

Watson, Alan M. PhD*†; Benton, Angela S. BAS*; Rose, Mary C. PhD*‡§∥; Freishtat, Robert J. MD*§∥¶

Collapse Box


Background: Asthma, a major cause of chronic lung disease worldwide, has increased in prevalence in all age and ethnic groups, particularly in urban areas where cigarette smoking is common. Cigarette smoke (CS) significantly impacts the development of asthma and is strongly associated with increased asthma-related morbidity.

Purpose: To evaluate bioinformatic analyses predicting that CS would alter expression of tissue inhibitor of metalloproteinase (TIMP) 1 and matrix metalloproteinase (MMP) 9 in asthmatic epithelium.

Methods: Primary differentiated normal (n = 4) and asthmatic (n = 4) human respiratory epithelia on collagen-coated Transwells at air-liquid interface were exposed for 1 hour to CS condensate (CSC) or hydrogen peroxide (H2O2). Tissue inhibitor of metalloproteinase 1 and MMP-9 protein levels were measured at 24 hours by enzyme-linked immunosorbent assay in cell lysates and in apical and basolateral secretions.

Results: Tissue inhibitor of metalloproteinase 1 and MMP-9 levels in the apical secretions of normal and asthmatic epithelia were unchanged after exposure to CSC and H2O2. However, CSC increased TIMP-1 levels in the basolateral secretions of both normal and asthmatic epithelia, but decreased MMP-9 levels only in asthmatic basolateral secretions, resulting in a 2.5-fold lower MMP-9/TIMP-1 ratio that corresponded to decreased MMP-9 activity in CS-exposed asthmatic basolateral secretions.

Conclusions: These data validate our prior bioinformatic analyses predicting that TIMP-1 plays a role in the stress response to CS and indicate that asthmatics exposed to CS may be more susceptible to MMP-9-mediated airway remodeling. This is in agreement with the current paradigm that a reduction in the MMP-9/TIMP-1 ratio is a milieu that favors subepithelial airway remodeling in chronic asthma.

© 2010 American Federation for Medical Research


Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.