Skip Navigation LinksHome > June 2008 - Volume 26 - Issue 6 > Crosstalk between the heme oxygenase system, aldosterone, an...
Journal of Hypertension:
doi: 10.1097/HJH.0b013e3282fad93d
Original papers: Aldosterone

Crosstalk between the heme oxygenase system, aldosterone, and phospholipase C in hypertension

Ndisang, Joseph Fomusi; Lane, Nina; Jadhav, Ashok

Collapse Box

Abstract

Background: Aldosterone is a mineral corticoid hormone that is produced in response to angiotensin-II, and like angiotensin-II, stimulates inflammation, oxidative stress, and fibrosis by activating nuclear factor-κB and activating protein-1. Recent evidence, however, indicates that aldosterone stimulates phospholipase C and activates nuclear factor-κB and activating protein-1. Although the heme oxygenase system is cytoprotective, its effects on aldosterone–phospholipase C signaling in deoxycorticosterone acetate (DOCA-salt) hypertension, a model of aldosteronism, and spontaneously hypertensive rat, a genetic model of human essential hypertension, have not been fully characterized.

Methods: In the present study, the heme oxygenase inducer, hemin, was given to spontaneously hypertensive and deoxycorticosterone acetate hypertensive rats, and the effects on blood pressure, aldosterone, nuclear factor-κB, activating protein-1, phospholipase C, and inositol 1,4,5-triphosphate were examined.

Results: Hemin therapy restored physiological blood pressure to spontaneously hypertensive rats (209.9 ± 0.9 to 127.3 ± 0.85 mmHg, n = 10, P < 0.01) and to deoxycorticosterone acetate salt hypertensive rats (195.7 ± 1.8 vs.132.5 ± 2.1 mmHg; P < 0.01, n = 10), but had no effect on age-matched normotensive Wistar–Kyoto or Sprague–Dawley strains. The antihypertensive effect was accompanied by enhanced heme oxygenase activity, upregulated cyclic guanosine monophosphate-protein kinase G signaling, increased superoxide dismutase activity, and the potentiation of total antioxidant capacity, whereas aldosterone, activating protein-1, and nuclear factor-κB were reduced. Furthermore, hemin suppressed phospholipase C activity, attenuated inositol 1,4,5-triphosphate, and reduced resting intracellular calcium in the aorta.

Conclusion: Collectively, our results suggest that the concomitant depletion of aldosterone, phospholipase C-inositol 1,4,5-triphosphate activity, resting intracellular calcium and the corresponding decline of inflammatory, and oxidative insults may account for the antihypertensive effects of hemin in deoxycorticosterone acetate hypertension and spontaneously hypertensive rats.

© 2008 Lippincott Williams & Wilkins, Inc.

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.