Skip Navigation LinksHome > July/August 2013 - Volume 8 - Issue 4 > Performance of a Novel Bipolar/Monopolar Radiofrequency Abla...
Innovations: Technology & Techniques in Cardiothoracic & Vascular Surgery:
doi: 10.1097/IMI.0b013e3182a77f2b
Original Articles

Performance of a Novel Bipolar/Monopolar Radiofrequency Ablation Device on the Beating Heart in an Acute Porcine Model

Saint, Lindsey L. MD; Lawrance, Christopher P. MD; Okada, Shoichi MD; Kazui, Toshinobu MD, PhD; Robertson, Jason O. MD; Schuessler, Richard B. PhD; Damiano, Ralph J. MD

Collapse Box

Abstract

Objective

Although the advent of ablation technology has simplified and shortened surgery for atrial fibrillation, only bipolar clamps have reliably been able to create transmural lesions on the beating heart. Currently, there are no devices capable of reproducibly creating the long linear lesions in the right and left atria needed to perform a Cox-Maze procedure. This study evaluated the performance of a novel suction-assisted radiofrequency device that uses both bipolar and monopolar energy to create lesions from an epicardial approach on the beating heart.

Methods

Six domestic pigs underwent median sternotomy. A dual bipolar/monopolar radiofrequency ablation device was used to create epicardial linear lesions on the superior and inferior vena cavae, the right and left atrial free walls, and the right and left atrial appendages. The heart was stained with 2,3,5-triphenyl-tetrazolium chloride, and each lesion was cross-sectioned at 5-mm intervals. Lesion depth and transmurality were determined.

Results

Transmurality was documented in 94% of all cross sections, and 68% of all ablation lines were transmural along their entire length. Tissue thickness was not different between the transmural and nontransmural cross sections (3.1 ± 1.3 and 3.4 ± 2.1, P = 0.57, respectively), nor was the anatomic location on the heart (P = 0.45 for the distribution). Of the cross sections located at the end of the ablation line, 11% (8/75) were found to be nontransmural, whereas only 4% (8/195) of the cross sections located within the line of ablation were found to be nontransmural (P = 0.04). Logistic regression analysis demonstrated that failure of the device to create transmural lesions was associated with low body temperature (P = 0.006) but not with cardiac output (P = 0.54).

Conclusions

This novel device was able to consistently create transmural epicardial lesions on the beating heart, regardless of anatomic location, cardiac output, or tissue thickness. The performance of this device was improved over most devices previously tested but still falls short of ideal clinical performance. Transmurality was lower at the end of the lesions, highlighting the importance of overlapping lines of ablation in the clinical setting.

Copyright © 2013 by the International Society for Minimally Invasive Cardiothoracic Surgery

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.