Institutional members access full text with Ovid®

Share this article on:

Evaluation of a Novel Cryoablation System: In vivo Testing in a Chronic Porcine Model

Weimar, Timo MD; Lee, Anson M. MD; Ray, Shuddhadeb MD; Schuessler, Richard B. PhD; Damiano, Ralph J. Jr MD

Innovations: Technology & Techniques in Cardiothoracic & Vascular Surgery: November/December 2012 - Volume 7 - Issue 6 - p 410–416
doi: 10.1097/IMI.0b013e31828534e5
Original Articles

Objective: Cryoablation is commonly used at present in the surgical treatment of atrial fibrillation (AF). However, there have been few studies examining the efficacy of the commonly used ablation devices. This report compares the efficacy of two cryoprobes in creating transmural endocardial lesions on the beating heart in a porcine model for chronic AF.

Methods: In six Hanford miniature swine, the right atrial appendage and the inferior vena cava were isolated using a bipolar radiofrequency clamp to create areas of known conduction block. A connecting ablation line was performed endocardially via a purse string with the novel malleable 10-cm Cryo1 probe for 2 minutes at −40°C. Additional ablation lines were created with the Cryo1 and the 3.5-cm 3011 Maze Linear probe on the right and the left atrial wall. Epicardial activation mapping was performed before and immediately after ablation as well as 14 days postoperatively. Histologic examination was performed 14 days postoperatively.

Results: Transmural lesions were confirmed in 83/84 cross-sections (99%) for the Cryo1 probe and in 40/41 cross-sections (98%) for the 3011 Maze Linear probe. There was no difference between the devices in lesion width (mean ± SD, Cryo1, 10.7 ± 3.5 mm; 3011, 10.0 ± 3.9 mm; P = 0.31), lesion depth (Cryo1, 4.5 ± 1.7 mm; 3011, 4.6 ± 1.5 mm; P = 0.74), or atrial wall thickness (Cryo1, 4.5 ± 1.8 mm; 3011, 4.7 ± 1.7 mm; P = 0.74). There was a conduction delay across the right atrial ablation line (20 ± 2 milliseconds vs 51 ± 8 milliseconds, P < 0.001) that remained unchanged at 14 days (51 ± 8 milliseconds vs 52 ± 10 milliseconds, P = 0.88).

Conclusions: The Cryo1 probe created transmural lesions on the beating heart, resulting in sustained conduction delay. Both probes had a similar performance in lesion geometry in this chronic animal model.

From the Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, StLouis, MO USA.

Accepted for publication December 8, 2012.

Supported, in part, by the National Heart, Lung and Blood Institute at the National Institutes of Health (grants RO1 HL032257, RO1 HL085113, and T32 HL07776).

Disclosures: Richard B. Schuessler, MD, receives research support from AtriCure, Inc, Cincinnati, OH USA. Ralph J. Damiano, MD, is a consultant for AtriCure, Inc, Cincinnati, OH USA, and Medtronic, Inc, Minneapolis, MN USA and has received research grants from AtriCure, Inc. Timo Weimar, MD; Anson M. Lee, MD; and Shuddhadeb Ray, MD, declare no conflict of interest.

Address correspondence and reprint requests to Ralph J. Damiano, Jr, MD, Division of Cardiothoracic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, Suite 3108 Queeny Tower, 1 Barnes-Jewish Hospital Plaza, St Louis, MO 63110 USA. E-mail: damianor@wustl.edu.

Copyright © 2012 by the International Society for Minimally Invasive Cardiothoracic Surgery. Unauthorized reproduction of this article is prohibited.