Skip Navigation LinksHome > May 2008 - Volume 16 - Issue 3 > Vancomycin-Resistant Enterococcus raffinosus Endocarditis: A...
Infectious Diseases in Clinical Practice:
doi: 10.1097/IPC.0b013e31816379fc
Review Articles

Vancomycin-Resistant Enterococcus raffinosus Endocarditis: A Case Report and Review of Literature

Dalal, Aman MD*; Urban, Carl PhD*†; Rubin, David MD*‡; Ahluwalia, Maneesha MD*

Free Access
Article Outline
Collapse Box

Author Information

*Division of Infectious Diseases, New York Hospital Queens, Flushing; †Department of Microbiology; and ‡Department of Medicine, Weill Cornell Medical College, New York, NY.

Address correspondence and reprint requests to Aman Dalal, MD, New York Hospital Queens, 56-45 Main St, Flushing, NY 11355. E-mail: amandalal@hotmail.com.

Collapse Box

Abstract

The French word enterocque was first used in 1899 by Thiercelin to describe gram-positive cocci of enteric origin that formed pairs and short chains. The genus Enterococcus includes 17 species. Most human clinical infections are caused by either Enterococcus faecalis (74%-90%) or Enterococcus faecium (5%-16%). Since its identification in 1989, Enterococcus raffinosus has been rarely associated with human infections. We describe a case of vancomycin-resistant E. raffinosus native valve infective endocarditis. E. raffinosus was isolated from the patient's blood cultures. The patient was treated with ampicillin for 6 weeks and gentamicin for the first 2 weeks with complete recovery.

Back to Top | Article Outline

CASE REPORT

The patient was an 84-year-old woman, a nursing home resident with underlying medical problems including tracheostomy for ventilator-dependent end-stage chronic obstructive pulmonary disease, chronic indwelling Foley catheter, atherosclerotic heart disease, hypertension, and congestive heart failure. The patient was referred to our hospital with complaints of fatigue for 2 to 3 months and fever on and off for least 2 to 3 weeks. On physical examination, the patient had a new loud murmur in mitral area, diffusely diminished breath sounds, and fever of 38.8°C.

A chest radiograph showed chronic emphysematous changes, and the blood work revealed 17,800/µL leukocytes (84% neutrophils and 16% lymphocytes). Blood cultures done at admission revealed gram-positive cocci in chains within 24 hours in 8 out of 8 bottles. These were later identified as Enterococcus raffinosus (BD Phoenix Automated Microbiology System) with a confidence level of 99%. Susceptibility by BD Phoenix Automated Microbiology System for minimum inhibitory concentration were: penicillin (1.0), ampicillin (1.0), moxifloxacin (0.50), daptomycin (2.0), linezolid (2.0), gentamicin-synergy (<500), and vancomycin (>16). Transthoracic echocardiography revealed normal functioning valves, without evidence of vegetation, thrombi, or pericardial effusion. Transesophageal echocardiography on hospital day 2 detected a small mobile echodensity attached to the mitral valve, consistent with a vegetation. Urine and sputum culture remained negative for bacterial growth.

The patient initially received vancomycin 1 g every 12 hours, ampicillin 2 g every 4 hours, and gentamicin 80 mg every 8 hours intravenously. Once E. raffinosus was identified on day 3, vancomycin was discontinued. Gentamicin was given for the first 2 weeks and ampicillin for a total of 6 weeks. Subsequent blood cultures during antibiotic therapy remained negative for bacterial growth. The patient had a complete recovery.

Back to Top | Article Outline

DISCUSSION

The French word enterocque was first used in 1899 by Thiercelin to describe gram-positive cocci of enteric origin that formed pairs and short chains. The genus Enterococcus includes 17 species. Although Enterococcus faecalis and Enterococcus faecium account for most clinical infections, other less common species such as Enterococcus avium and Enterococcus durans are known to cause significant disease.1-4 In 1989, a new species, E. raffinosus, was distinguished from the phenotypically similar species E. avium by the ability of the former to metabolize raffinose,1,5 a characteristic not recognized unless detailed biochemical examination is undertaken. The natural habitat of E. raffinosus is not known, but this microorganism has been identified in the oropharynx of domestic cats.6

The API 32 STREP identification system identifies only Enterococcus casseliflavus, E. durans, E. avium, Enterococcus gallinarum, and Enterococcus hirae from the recently described enterococcal species. Identification data for other enterococcal species including Enterococcus cecorum, Enterococcus dispar, Enterococcus gilvus, Enterococcus mundtii, Enterococcus pallens, and Enterococcus raffinosus are missing in the API 32 STREP system. E. raffinosus is commonly misidentified as E. avium.7,8 This misidentification may explain why E. raffinosus has been so rarely reported in humans. The BD Phoenix System, however, included E. raffinosus in its gram-positive identification database.

The first vancomycin-resistant clinical isolates of Enterococcus species were reported in Europe in 1988. Since then, vancomycin-resistant enterococci have spread with unexpected rapidity and are now encountered in hospitals in most countries. Six types of vancomycin resistance have been characterized on both a phenotypic and a genotypic basis in enterococci.9 VanA, VanB, VanD, VanE, and VanG correspond to acquired resistance. VanC is an intrinsic property of E. gallinarum and E. casseliflavus-Enterococcus flavescens. VanA-type strains display high levels of inducible resistance to both vancomycin and teicoplanin, whereas VanB-type strains have variable levels of inducible resistance to vancomycin only.10 VanD-type strains are characterized by constitutive resistance to moderate levels of the 2 glycopeptides.11 VanC-, VanE-, and VanG-type strains are resistant to low levels of vancomycin but remain susceptible to teicoplanin.12 The VanA and VanB operons are located on plasmids or in the chromosome,13 whereas the VanD,11 VanC,14 VanE,15 and VanG16 operons have, thus far, been found only in the chromosome.

A MEDLINE search of the terms "Enterococcus raffinosus" and "infection" found 33 cases of infections in humans caused by E. raffinosus, summarized in Table 1. However, detailed susceptibility patterns, treatment, andoutcome results were not available for many cases. Itseems to occur more often in elderly patients as nosocomial infections.18,19 Most of the reports describe resistance to ampicillin and penicillin and susceptibility tovancomycin.17-19 Reports of VanA7 and VanD21 types ofvancomycin resistance in E. raffinosus are available. These different results elucidate that it is difficult to provide susceptibility pattern for E. raffinosus from the few reports available so far.

Table 1
Table 1
Image Tools
Back to Top | Article Outline

CONCLUSIONS

Enterococcus currently is recognized as one of the most common causes of nosocomial infections and is becoming increasingly resistant to numerous antibiotics including vancomycin. This report confirms the potential of E. raffinosus to cause serious infections in humans, as described in previous reports, and emphasizes the need for further molecular-based species identification methods for enterococcal isolates that cannot be identified with certainty by traditional microbiological methods.

Back to Top | Article Outline

REFERENCES

1. Facklam RR, Collins MD. Identification of Enterococcus species isolated from human by a conventional test scheme. J Clin Microbiology. 1989;27:731-734.

2. Maki DG, Agger WA. Enterococcal bacteremia: clinical features, the risk of endocarditis and management. Medicine (Baltimore). 1988;67:248-269.

3. Ruoff KL, De la Maza L, Murtagh MJ, et al. Species identities of enterococci isolated from clinical specimen. J Clin Microbiol. 1990;28:435-437.

4. Watankunakorn C. Enterococci from blood cultures during 1980-1989; susceptibility to ampicillin, penicillin and vancomycin. J Antimicrob Chemother. 1990;26:602-604.

5. Collins MD, Facklam RR, Farrow JAE, Williamson R. E raffinosus sp. Nov, E solitarius sp nov, E pseudoavium sp nov. FEMS Microbiol Lett. 1989;57:283-288.

6. Devriese LA, Cruz CJI, De HP, et al. Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats. J Appl Bacteriol. 1992;73:421-425.

7. Wilke WW, Marshall SA, Coffman SL, et al. Vancomycin-resistant Enterococcus raffinosus: molecular epidemiology, species identification error, and frequency of occurrence in a national resistance surveillance program. Diagn Microbiol Infect Dis. 1997;28:43-49.

8. Grayson ML, Eliopoulos GM, Wennersten CB, et al. Comparison of Enterococcus raffinosus with Enterococcus avium on the basis of penicillin susceptibility, penicillin-binding protein analysis, and high-level aminoglycoside resistance. Antimicrob Agents Chemother. 1991;35(7):1408-1412.

9. Courvalin P. Vancomycin-resistant gram-positive cocci. Clin Infect Dis. 2006;42:S25-S34.

10. Arthur M, Depardieu F, Reynolds P, et al. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol Microbiol. 1996;21:33-44.

11. Depardieu F, Reynolds PE, Courvalin P. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother. 2003;47:7-18.

12. Reynolds PE, Courvalin P. Vancomycin resistance by synthesis of precursors terminating in D-alanyl-D-alanine. Antimicrob Agents Chemother. 2005;49:21-25.

13. Arthur M, Reynolds P, Courvalin P. Glycopeptide resistance in enterococci. Trends Microbiol. 1996;4:401-407.

14. Arias CA, Courvalin P, Reynolds PE. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob Agents Chemother. 2000;44:1660-1666.

15. Abadia Patino L, Courvalin P, Perichon B. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol. 2002;184:6457-6464.

16. Depardieu F, Bonora MG, Reynolds PE, et al. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol Microbiol. 2003;50:931-948.

17. Chirugi VA, Oster SE, Goldberg AA, et al. Ampicillin-resistant E. raffinosus in an acute-care hospital: case-control study & antimicrobial susceptibilities. J Clin Microbiol. 1991;29(11):2663-2665.

18. Boyce JM, Opal SM, Potter-Bynoe G, et al. Emergence and nosocomial transmission of ampicillin-resistant enterococci. Antimicrob Agents Chemother. 1992;36:1032-1039.

19. Sandoe JAT, Witherden IR, Settle C. Vertebral osteomyelitis caused by E. raffinosus. J Clin Microbiol. 2001;39:1678-1679.

20. Freyaldenhoven BS, Schlieper G, Lutticken R, et al. Enterococcus raffinosus infection in an immunosuppressed patient: case report and review of the literature. J Infect. 2005;51(3):E121-E124.

21. Tanimoto K, Nomura T, Maruyama H, et al. First VanD-type vancomycin-resistant Enterococcus raffinosus isolate. Antimicrob Agents Chemother. 2006;50(11):3966-3967. [Epub 2006 Sep 25].

© 2008 Lippincott Williams & Wilkins, Inc.