Skip Navigation LinksHome > July 2013 - Volume 19 - Issue 8 > Induced and Natural Regulatory T Cells in the Development of...
Inflammatory Bowel Diseases:
doi: 10.1097/MIB.0b013e318281f5a3
Basic Science Review Articles

Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease

Mayne, Christopher G. PhD; Williams, Calvin B. MD, PhD

Collapse Box

Abstract

The mucosal immune system mediates contact between the host and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this “extended self” can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3+ regulatory T (Treg) cells. Treg cells can be divided into 2 primary subsets: “natural” Treg cells and “adaptive” or “induced” Treg. Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest that defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review, we summarize the development and function of Treg cells and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of patients with IBD suggesting Treg cell involvement in IBD and consider how Treg cells may be used in future therapies.

Copyright © 2013 Crohn's & Colitis Foundation of America, Inc.

You currently do not have access to this article.

You may need to:

Note: If your society membership provides for full-access to this article, you may need to login on your society’s web site first.

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.