Health Physics

Skip Navigation LinksHome > January 2010 - Volume 98 - Issue 1 > EFFECT OF WALL THICKNESS ON MEASUREMENT OF DOSE FOR HIGH ENE...
Health Physics:
doi: 10.1097/HP.0b013e3181b8d032


Perez-Nunez, Delia; Braby, Leslie A.*

Collapse Box


Neutrons produced from the interaction between galactic cosmic rays and spacecraft materials are responsible for a very important portion of the dose received by astronauts. The neutron energy spectrum depends on the incident charged particle spectrum and the scattering environment but generally extends to beyond 100 MeV. Tissue-equivalent proportional counters (TEPC) are used to measure the dose during the space mission, but their weight and size are very important factors for their design and construction. To achieve ideal neutron dosimetry, the wall thickness should be at least the range of a proton having the maximum energy of the neutrons to be monitored. This proton range is 0.1 cm for 10 MeV neutrons and 7.6 cm for 100 MeV neutrons. A 7.6 cm wall thickness TEPC would provide charged particle equilibrium (CPE) for neutrons up to 100 MeV, but for space applications it would not be reasonable in terms of weight and size. In order to estimate the errors in measured dose due to absence of CPE, MCNPX simulations of energy deposited by 10 MeV and 100 MeV neutrons in sites with wall thickness between 0.1 cm and 8.5 cm were performed. The results for 100 MeV neutrons show that energy deposition per incident neutron approaches a plateau as the wall thickness approaches 7.6 cm. For the 10 MeV neutrons, energy deposition per incident neutron decreases as the wall thickness increases above 0.1 cm due to attenuation.

©2010Health Physics Society


Article Level Metrics

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.