Institutional members access full text with Ovid®


Stigum, Hein; Strand, Terje; Magnus, Per


Abstract—: Background: Radon is a radioactive gas that may leak into buildings from the ground. Radon exposure is a risk factor for lung cancer. An intervention against radon exposure in homes may consist of locating homes with high radon exposure (above 200 Bq m−3) and improving these, and protecting future houses. The purpose of this paper is to calculate the costs and the effects of this intervention. Methods: We performed a cost-effect analysis from the perspective of the society, followed by an uncertainty and sensitivity analysis. The distribution of radon levels in Norwegian homes is lognormal with mean = 74.5 Bq m−3, and 7.6% above 200 Bq m−3. Results: The preventable attributable fraction of radon on lung cancer was 3.8% (95% uncertainty interval: 0.6%, 8.3%). In cumulative present values the intervention would cost $238 (145, 310) million and save 892 (133, 1981) lives; each life saved costs $0.27 (0.09, 0.9) million. The cost-effect ratio was sensitive to the radon risk, the radon exposure distribution, and the latency period of lung cancer. Together these three parameters explained 90% of the variation in the cost-effect ratio. Conclusions: The uncertainty in the estimated cost per life is large, mainly due to uncertainty in the risk of lung cancer from radon. Based on estimates from road construction, the Norwegian society has been willing to pay $1 million to save a life. This is above the upper uncertainty limit of the cost per life. The intervention against radon in homes, therefore, seems justifiable.

*Department of Epidemiology, Norwegian Institute of Public Health; Norwegian Radiation Protection Authority.

Manuscript received 28 February 2002;

revised manuscript received 26 June 2002, accepted 12 September 2002

For correspondence or reprints contact: H. Stigum, P.O. Box 4404 Nydalen, 0403 Oslo, Norway, or email at

© 2003 by the Health Physics Society