Skip Navigation LinksHome > December 1993 - Volume 65 - Issue 6 > Tritium Sampling and Measurement.
Health Physics:
Papers: PDF Only

Tritium Sampling and Measurement.

Wood, M. J.; McElroy, R. G. C.; Surette, R. A.; Brown, R. M.

Collapse Box

Abstract

Current methods for sampling and measuring tritium are described. Although the basic techniques have not changed significantly over the last 10 y, there have been several notable improvements in tritium measurement instrumentation. The design and quality of commercial ion-chamber-based and gas-flow-proportional-counter-based tritium monitors for tritium-in-air have improved, an indirect result of fusion-related research in the 1980s. For tritium-in-water analysis, commercial low-level liquid scintillation spectrometers capable of detecting tritium-in-water concentrations as low as 0.65 Bq L-1 for counting times of 500 min are available. The most sensitive method for tritium-in-water analysis is still 3He mass spectrometry. Concentrations as low as 0.35 mBq L-1 can be detected with current equipment. Passive tritium-oxide-in-air samplers are now being used for workplace monitoring and even in some environmental sampling applications. The reliability, convenience, and low cost of passive tritium-oxide-in-air samplers make them attractive options for many monitoring applications. Airflow proportional counters currently under development look promising for measuring tritium-in-air in the presence of high gamma and/or noble gas backgrounds. However, these detectors are currently limited by their poor performance in humidities over 30%.

(C)1993Health Physics Society

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.