Skip Navigation LinksHome > October 2006 - Volume 108 - Issue 4 > Blood Transfusion and Cesarean Delivery
Obstetrics & Gynecology:
doi: 10.1097/01.AOG.0000236547.35234.8c
Original Research

Blood Transfusion and Cesarean Delivery

Rouse, Dwight J. MD, MSPH; MacPherson, Cora PhD; Landon, Mark MD; Varner, Michael W. MD; Leveno, Kenneth J. MD; Moawad, Atef H. MD; Spong, Catherine Y. MD; Caritis, Steve N. MD; Meis, Paul J. MD; Wapner, Ronald J. MD; Sorokin, Yoram MD; Miodovnik, Menachem MD; Carpenter, Marshall MD; Peaceman, Alan M. MD; O'Sullivan, Mary Jo MD; Sibai, Baha M. MD; Langer, Oded MD; Thorp, John M. MD; Ramin, Susan M. MD; Mercer, Brian M. MD; for the National Institite of Child Health and Human Development Maternal–Fetal Medicine Units Network

Free Access
Article Outline
Collapse Box

Author Information

From the Departments of 1 Obstetrics and Gynecology, the University of Alabama at Birmingham, Birmingham, Alabama; the 2 George Washington University Biostatistics Center, Washington, DC; 3 Ohio State University, Columbus, Ohio; 4 University of Utah, Salt Lake City, Utah; 5 University of Texas Southwestern Medical Center, Dallas, Texas; 6 University of Chicago, Chicago, Illinois; 7 the National Institute of Child Health and Human Development, Bethesda, Maryland; 8 University of Pittsburgh, Pittsburgh, Pennsylvania; 9 Wake Forest University School of Medicine, Winston-Salem, North Carolina; 10 Thomas Jefferson University, Philadelphia, Pennsylvania; 11 Wayne State University, Detroit, Michigan; 12 University of Cincinnati, Cincinnati, Ohio; 13 Brown University, Providence, Rhode Island; 14 Northwestern University, Chicago, Illinois; 15 University of Miami, Miami, Florida; 16 University of Tennessee, Memphis, Tennessee; 17 University of Texas Health Science Center at San Antonio, San Antonio, Texas; 18 University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 19 University of Texas Health Science Center at Houston, Houston, Texas; and 20 Case Western Reserve University, Cleveland, Ohio.

See related article on page 885.

* For members of the National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network, see the Appendix.

Supported by grants From the National Institute of Child Health and Human Development (HD21410, HD21414, HD27860, HD27861, HD27869, HD27905, HD27915, HD27917, HD34116, HD34122, HD34136, HD34208, HD34210, HD40500, HD40485, HD40544, HD40545, HD40560, HD40512, and HD36801).

The following core committee members participated in protocol development and coordination between clinical research centers (F. Johnson and J. McCampbell), protocol and data management and statistical analysis (Elizabeth Thom), and protocol development and oversight (John Hauth).

Presented at the annual meeting of the Society for Gynecologic Investigation, Toronto, Ontario, Canada, March 22–26, 2006.

Corresponding author: Dwight J. Rouse, MD, MSPH, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, 619 19th St. South, OHB 457, Birmingham, AL 35249-7333; e-mail: drouse@uab.edu.

Collapse Box

Abstract

OBJECTIVE: To evaluate risks for intraoperative or postoperative packed red blood cell transfusion in women who underwent cesarean delivery.

METHODS: This was a 19-university prospective observational study. All primary cesarean deliveries from January 1, 1999, to December 31, 2000, and all repeat cesareans from January 1, 1999, to December 31, 2002, were included. Trained, certified research nurses performed systematic data abstraction. Primary and repeat cesarean deliveries were analyzed separately. Univariable analyses were used to inform multivariable analyses.

RESULTS: A total of 23,486 women underwent primary cesarean delivery, of whom 762 (3.2%) were transfused (median 2 units, 25th% to 75th% 2–3 units). A total of 33,683 women underwent primary cesarean delivery, and 735 (2.2%) were transfused (median 2 units, 25th% to 75th% 2–4 units). Among primary cesareans, general anesthesia (odds ratio [OR] 4.2, 95% confidence interval [CI] 3.5–5.0), placenta previa (OR 4.8, CI 3.5–6.5) and severe (hematocrit less than 25%) preoperative anemia (OR 17.0, CI 12.4–23.3) increased the odds of transfusion. Among repeat cesareans, the risk was increased by general anesthesia (OR 7.2, CI 5.9–8.7), a history of five or more prior cesareans (OR 7.6, CI 4.0–14.3), placenta previa (OR 15.9, CI 12.0–21.0), and severe preoperative anemia (OR 19.9, CI 14.5–27.2).

CONCLUSION: Overall, the risk of transfusion in association with cesarean is low. However, both severe preoperative maternal anemia and placenta previa are associated with markedly increased risks. The former argues for optimizing maternal antenatal iron status to avoid severe anemia and the latter for careful perioperative planning when previa complicates cesarean.

LEVEL OF EVIDENCE: II-2

Hemorrhage is second only to embolism as a cause of pregnancy-related mortality in the United States.1 Much of the existing data on cesarean-associated transfusion was retrospectively collected and is not contemporary. In this investigation, we have more precisely defined risk factors for the administration of packed red blood cells in association with cesarean delivery in a recently assembled, large prospective cohort. Our hope was that these data, reflective of current transfusion practices in a broadly representative sample of U.S. women, might be useful in patient counseling, perioperative planning, and even perhaps in reducing the risk of transfusion.

Back to Top | Article Outline

MATERIALS AND METHODS

Subjects were identified as part of a 19-center observational study of cesarean delivery for the four-year period January 1, 1999, to December 31, 2002. Each clinical center and the data coordinating center had institutional review board approval for this study, and the requirement for informed consent was waived. For the first 2 years of the study, women who underwent cesarean delivery were identified on a daily basis by trained, certified research personnel who abstracted data from hospital records and logs onto standardized forms. For the final 2 years of the study, only women who underwent repeat cesarean delivery were identified and had their data collected. This change occurred because the primary focus of this observational study was trial of labor after cesarean. Although planned as only a 2-year study, the declining rate of trial of labor after cesarean necessitated 2 more years of data collection to meet the sample size goal for this group. Gestational age was assigned based on the best estimate of the local caregivers (and in 28%, 46%, and 11%, respectively, included a 1st, 2nd, or 3rd trimester ultrasound). In all of the participating centers, some form of prophylaxis against uterine atony was routinely employed. However, we did not collect information on specific prophylactic regimens for individual women.

Data lacking unique patient identifiers were transmitted weekly from each of the 19 clinical centers by telecommunications link to the data coordinating center where they were edited for missing, out of range, and inconsistent values. Weekly, edit reports were transmitted to each center for correction or clarification. Data were also compared across forms at regular intervals, and corrections and clarifications were requested from the centers as appropriate.

The independent variable for this study was transfusion of packed red blood cells, intraoperatively or postoperatively before hospital discharge (“transfusion”). Because the 1) obstetric characteristics and clinical situations in which primary and repeat cesareans were performed differed substantially (eg, the former most often experienced labor and the latter did not); 2) outcomes associated with certain conditions (eg, placenta previa) were predicted to be dependent on whether the cesarean was a primary or a repeat; and 3) data collection period for the two conditions was not synchronous, we analyzed primary and repeat cesarean deliveries separately.

Categorical variables were compared by the χ2 test, Fisher exact test, or Mantel-Haenszel test of trend, as appropriate. Continuous variables were compared using the Wilcoxon rank sum test. Variables found to be significant in univariable analysis were entered into a multivariable logistic regression model. Backward selection was used to retain only those variables with P values less than .05. Nominal two-tailed P values are reported with no adjustments made for multiple comparisons. For this analysis a P value less than .05 was considered statistically significant. All analyses of multiple gestation were predicated only on the first infant delivered. SAS 8 software (SAS Institute, Inc., Cary, NC) was used for analysis.

Back to Top | Article Outline

RESULTS

Primary Cesareans

A total of 23,486 pregnancies were analyzed. Seven hundred sixty-two women (3.2%) were transfused (median 2 units, 25th to 75th % 2–3 units). In 114 (15%) women, the transfusion was given only intraoperatively, in 556 (73%) it was given only postoperatively, and in 92 (12%) women it was given during both periods. The mean (plus or minus standard deviation) maternal age was 27 (±7) years. Forty-two percent were white, 31% African American, 21% Hispanic, and 5% other. Most (68%) were nulliparous. Mean body mass index (BMI) at delivery was 32.5 kg/m2 (±7.1). Fifty-five percent had government-funded (or no) insurance and 45% private insurance. Mean gestational age at delivery was 38 (±4) weeks, and mean birth weight 3,039 (±943) gm. Seventy-five percent experienced labor. The predominant cesarean indication was abnormally progressive labor (37%), followed by nonreassuring fetal heart rate status (23%).

In univariable analyses, several continuous variables were significantly associated with transfusion (Table 1). Compared with women who did not undergo transfusion, women who did were, on average, approximately one-half year younger, had a slightly lower BMI, and had a preoperative hematocrit that was 4% lower. Their mean gestational age at delivery was nearly 2 weeks earlier; if induced, their median induction time was 2 hours longer; and if they received oxytocin, it was administered for almost 2 hours longer. The average birth weight of their infants was 338 g lighter. We also analyzed hematocrit as a continuous variable: for each percentage point increase in hematocrit, the odds ratio (OR) for transfusion was 0.8 (95% confidence interval [CI] 0.79–0.82).

Table 1
Table 1
Image Tools

In univariable analyses of categorical variables, significant risk factors for transfusion included nonwhite race, multiparity (and progressively higher parity), multiple gestation, hypertensive disorders, clinically diagnosed chorioamnionitis,2 placental abruption, placenta previa, general anesthesia, mild (preoperative hematocrit 25–29%) and severe (preoperative hematocrit less than 25%) anemia, hysterotomy other than low transverse, and prematurity (gestational age less than 37 weeks, Table 2).

Table 2
Table 2
Image Tools

We combined factors from the above univariable analyses into a multivariable logistic regression model. In the final multivariable model, African American or Hispanic race, multiple gestation, preeclampsia, chorioamnionitis, placental abruption, mild preoperative maternal anemia (hematocrit 25–29%), general anesthesia, eclampsia or hemolysis, elevated liver enzymes, low platelets syndrome, placenta previa, and severe preoperative maternal anemia (hematocrit less than 25%) were significantly associated with transfusion in a progressively stronger fashion (Table 3).

Table 3
Table 3
Image Tools
Back to Top | Article Outline
Repeat Cesareans

A total of 33,683 pregnancies were analyzed. Seven hundred thirty-five women (2.2%) were transfused (median 2 units, 25th% to 75th% 2–4 units). In 169 (23%) women, the transfusion was given only intraoperatively, in 436 (59%) it was given only postoperatively, and in 130 (18%) women it was given during both periods. The mean (plus or minus standard deviation) maternal age was 30 (±6) years. Thirty-nine percent were white, 26% African American, 31% Hispanic, and 4% other. Median parity was 1. Mean BMI at delivery was 33.4 kg/m2 (±7.2). Fifty-seven percent had government-funded (or no) insurance, and 43% had private insurance. Mean gestational age at delivery was 38 (±3) weeks, and mean birth weight 3261 (±723) gm. Twenty-nine percent experienced labor. The predominant cesarean indication was elective repeat (63%).

In univariable analyses, several continuous variables were significantly associated with transfusion (Table 4). Compared with women who did not undergo transfusion, women who underwent transfusion were, on average, of lower BMI, and had a preoperative hematocrit that was almost 4% lower. Their mean gestational age at delivery was almost 2 weeks earlier and the mean birth weight of their infants was 427 g lighter. If their labor was augmented, the duration of augmentation was shorter. For each percentage point increase in hematocrit, the OR for transfusion was 0.8 (95% CI 0.77–0.80).

Table 4
Table 4
Image Tools

In univariable analyses of categorical variables, significant risk factors for transfusion included nonwhite race, parity of 3 and above, multiple gestation, three or more prior cesareans, hypertensive disorders, clinically diagnosed chorioamnionitis, placental abruption, placenta previa, general anesthesia, mild (preoperative hematocrit 25–29%) and severe (preoperative hematocrit less than 25%) anemia, hysterotomy other than low transverse, and prematurity (Table 5).

Table 5
Table 5
Image Tools

We combined significant factors from the above univariable analyses into a multivariable regression model and found preeclampsia, African-American or Hispanic race, race category “other,” chorioamnionitis, placental abruption, mild preoperative maternal anemia (hematocrit 25–29%), general anesthesia, 5 or more prior cesareans, placenta previa, and severe preoperative maternal anemia (hematocrit less than 25%) were significantly associated with transfusion in a progressively stronger fashion (Table 6).

Table 6
Table 6
Image Tools
Back to Top | Article Outline

DISCUSSION

In this contemporary, prospectively assembled cohort of approximately 57,000 women undergoing cesarean delivery, we have confirmed that overall the risk of cesarean-associated packed red blood cell transfusion is relatively low: 3.2% for primary cesarean and 2.2% for repeat. These rates are comparable to the contemporaneous rate of 3.3% (primary and repeat cesareans combined) reported in a four-hospital Danish study and a single hospital study in which a rate of 3.2% was reported for 1987.3,4

In addition to the large size of the cohort, a major strength of this study is that all data for the project were abstracted by trained and certified research nurses before hospital discharge using uniform criteria, and ongoing, systematic procedures for data quality control were employed. The major weakness of these data is that they are observational and do not reflect standardized transfusion practices. Nor did the analyses we performed take into account specific prophylactic regimens for the prevention of uterine atony, because this information was not collected.

Our analysis has revealed multiple factors that are associated with an increased risk of transfusion for women undergoing both a primary and a repeat cesarean delivery. Some of these factors have been previously identified, although from much smaller cohorts.5 Most notably, among women who underwent primary cesarean, a preoperative hematocrit of less than 25% was associated with a 36% risk of transfusion. Among women who underwent repeat cesarean, this degree of anemia also was associated with a high risk of transfusion (28%), as was the occurrence of placenta previa (32% risk). These risks argue for optimizing maternal antenatal iron status to avoid severe anemia, because iron deficiency is the most common cause of anemia during pregnancy,6 and they suggest that informing severely anemic iron deficient women about their high risk of transfusion should they undergo cesarean might enhance compliance with iron supplementation. These data also argue for careful perioperative planning when placenta previa complicates repeat cesarean.

As have others, we found that nontransverse hysterotomy was associated with an increased risk of transfusion, but with multivariable analysis this association was not statistically significant.7 Also as have others, we found that general anesthesia was independently associated with an increased risk of transfusion.8–10 In our study, the odds were quadrupled for women undergoing primary cesarean, and increased seven-fold for women undergoing repeat cesarean. In addition to the well-recognized risk of aspiration and failed intubation associated with general anesthesia, our data suggest that, all other things being equal, avoidance of transfusion, especially in the face of severe anemia, may be another reason to choose regional anesthesia for cesarean.

Back to Top | Article Outline

REFERENCES

1. Chang J, Elam-Evans LD, Berg CJ, Herndon J, Flowers L, Seed KA, et al. Pregnancy-related mortality surveillance—United States, 1991-1999. MMWR Surveill Summ 2003;52:1–8.

2. Rouse DJ, Landon M, Leveno KJ, Leindecker S, Varner MW, Caritis SN, et al. The Maternal-Fetal Medicine Units cesarean registry: chorioamnionitis at term and its duration—relationship to outcomes. Am J Obstet Gynecol 2004;191:211–6.

3. Larsen R, Titlestad K, Lillevang ST, Thomsen SG, Kidholm K, Georgsen J. Cesarean section: is pretransfusion testing for red cell alloantibodies necessary? Acta Obstet Gynecol Scand 2005;84:448–55.

4. Camann WR, Datta S. Red cell use during cesarean delivery. Transfusion 1991;31:12–5.

5. Cousins LM, Teplick FB, Poeltler DM. Pre-cesarean blood bank orders: a safe and less expensive approach. Obstet Gynecol 1996;87:912–6.

6. Cunningham FG, Leveno KJ, Bloom SL, Hauth JC, Gilstrap LC III, Wenstrom KD, editors Williams obstetrics. 22nd ed. New York (NY): McGraw-Hill Professional; 2005. p. 1145.

7. Patterson LS, O'Connell CM, Baskett TF. Maternal and perinatal morbidity associated with classic and inverted T cesarean incisions. Obstet Gynecol 2002;100:633–7.

8. Combs CA, Murphy EL, Laros RK Jr. Factors associated with hemorrhage in cesarean deliveries. Obstet Gynecol 1991;77: 77–82.

9. Gilstrap LC 3rd, Hauth JC, Hankins GD, Patterson AR. Effect of type of anesthesia on blood loss at cesarean section. Obstet Gynecol 1987;69:328–32.

10. Hager RM, Daltveit AK, Hofoss D, Nilsen ST, Kolaas T, Oian P, et al. Complications of cesarean deliveries: rates and risk factors. Am J Obstet Gynecol 2004;190:428–34.

Back to Top | Article Outline
APPENDIX

In addition to the authors, other members of the National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network are as follows:

Ohio State University—J. Iams, F. Johnson, S. Meadows, H. Walker

University of Alabama at Birmingham—J. Hauth, A. Northen, S. Tate

University of Texas Southwestern Medical Center—S. Bloom, J. McCampbell, D. Bradford

University of Utah—M. Belfort, F. Porter, B. Oshiro, K. Anderson, A. Guzman

University of Chicago—J. Hibbard, P. Jones, M. Ramos-Brinson, M. Moran, D. Scott

University of Pittsburgh—K. Lain, M. Cotroneo, D. Fischer, M. Luce

Wake Forest University—M. Harper, M. Swain, C. Moorefield, K. Lanier, L. Steele

Thomas Jefferson University—A. Sciscione, M. DiVito, M. Talucci, M. Pollock

Wayne State University—M. Dombrowski, G. Norman, A. Millinder, C. Sudz, B. Steffy

University of Cincinnati—T. Siddiqi, H. How, N. Elder

Columbia University—F. Malone, M. D'Alton, V. Pemberton, V. Carmona, H. Husami

Brown University—H. Silver, J. Tillinghast, D. Catlow, D. Allard

Northwestern University—M. Socol, D. Gradishar, G. Mallett

University of Miami— G. Burkett, J. Gilles, J. Potter, F. Doyle, S. Chandler

University of Tennessee—W. Mabie, R. Ramsey

University of Texas at San Antonio—O. Langer, S. Barker, M. Rodriguez

University of North Carolina—K. Moise, K. Dorman, S. Brody, J. Mitchell

University of Texas at Houston—L. Gilstrap, M. Day, M. Kerr, E. Gildersleeve

Case Western Reserve University—H. Ehrenberg, C. Milluzzi, B. Slivers, C. Santori

The George Washington University Biostatistics Center—E. Thom, S. Gilbert, H. Juliussen-Stevenson, M. Fischer

National Institute of Child Health and Human Development—D. McNellis, K. Howell, S. Pagliaro Cited Here...

Cited By:

This article has been cited 17 time(s).

International Journal of Obstetric Anesthesia
General anesthesia is unacceptable for elective cesarean section
Wong, CA
International Journal of Obstetric Anesthesia, 19(2): 209-212.
10.1016/j.ijoa.2009.10.002
CrossRef
Anaesthesist
Hemorrhaging during pregnancy
Hofer, S; Schreckenberger, R; Heindl, B; Gorlinger, K; Lier, H; Maul, H; Martin, E; Weigand, MA
Anaesthesist, 56(): 1075-1089.
10.1007/s00101-007-1261-2
CrossRef
Thrombosis and Haemostasis
Thromboprophylaxis with low-molecular-weight heparin after cesarean delivery A decision analysis
Blondon, M; Perrier, A; Nendaz, M; Righini, M; Boehlen, F; Boulvain, M; De Moerloose, P
Thrombosis and Haemostasis, 103(1): 129-137.
10.1160/TH09-06-0349
CrossRef
Archives of Gynecology and Obstetrics
Do asymptomatic patients require routine hemoglobin testing following uneventful, unplanned cesarean sections?
Api, O; Unal, O; Api, M; Dogance, U; Balcik, O; Kara, O; Turan, C
Archives of Gynecology and Obstetrics, 281(2): 195-199.
10.1007/s00404-009-1093-1
CrossRef
Australian & New Zealand Journal of Obstetrics & Gynaecology
Incidence and risk factors predicting blood transfusion in caesarean section
Chua, SC; Joung, SJ; Aziz, R
Australian & New Zealand Journal of Obstetrics & Gynaecology, 49(5): 490-493.
10.1111/j.1479-828X.2009.01042.x
CrossRef
International Journal of Obstetric Anesthesia
Retrospective analysis of transfusion outcomes in pregnant patients at a tertiary obstetric center
Butwick, AJ; Aleshi, P; Fontaine, M; Riley, ET; Goodnough, LT
International Journal of Obstetric Anesthesia, 18(4): 302-308.
10.1016/j.ijoa.2009.02.005
CrossRef
Obstetrics and Gynecology Clinics of North America
Management of pregnancy in a Jehovah's witness
Gyarnfi, C; Berkowitz, RL
Obstetrics and Gynecology Clinics of North America, 34(3): 357-+.
10.1016/j.oge.2007.06.005
CrossRef
Clinics in Perinatology
Mechanisms of Hemostasis at Cesarean Delivery
Bonanno, C; Gaddipati, S
Clinics in Perinatology, 35(3): 531-+.
10.1016/j.clp.2008.07.007
CrossRef
Obstetrics and Gynecology Clinics of North America
Intrapartum Hemorrhage
Alexander, JM; Wortman, AC
Obstetrics and Gynecology Clinics of North America, 40(1): 15-+.
10.1016/j.ogc.2012.12.003
CrossRef
Best Practice & Research Clinical Obstetrics & Gynaecology
Caesarean section on maternal request for non-medical reasons: Putting the UK National Institute of Health and Clinical Excellence guidelines in perspective
D'Souza, R
Best Practice & Research Clinical Obstetrics & Gynaecology, 27(2): 165-177.
10.1016/j.bpobgyn.2012.09.006
CrossRef
American Journal of Obstetrics and Gynecology
Evidence-based surgery for cesarean delivery: an updated systematic review
Dahlke, JD; Mendez-Figueroa, H; Rouse, DJ; Berghella, V; Baxter, JK; Chauhan, SP
American Journal of Obstetrics and Gynecology, 209(4): 294-306.
10.1016/j.ajog.2013.02.043
CrossRef
Journal De Gynecologie Obstetrique Et Biologie De La Reproduction
Women with previous caesarean or other uterine scar: Epidemiological features
Deneux-Tharaux, C
Journal De Gynecologie Obstetrique Et Biologie De La Reproduction, 41(8): 697-707.
10.1016/j.jgyn.2012.09.022
CrossRef
Acta Obstetricia Et Gynecologica Scandinavica
PACCRETA: Clinical situations at high risk of Placenta ACCRETA/Percreta: impact of diagnostic methods and management on maternal morbidity
Kayem, G; Deneux-Tharaux, C; Sentilhes, L
Acta Obstetricia Et Gynecologica Scandinavica, 92(4): 476-482.
10.1111/aogs.12078
CrossRef
Journal of Cardiothoracic and Vascular Anesthesia
Obstetric Hemorrhage
Friedman, AJ
Journal of Cardiothoracic and Vascular Anesthesia, 27(4): S44-S48.
10.1053/j.jvca.2013.05.016
CrossRef
Journal of Perinatal Medicine
To 'C' or not to 'C'? Caesarean delivery upon maternal request: a review of facts, figures and guidelines
D'Souza, R; Arulkumaran, S
Journal of Perinatal Medicine, 41(1): 5-15.
10.1515/jpm-2012-0049
CrossRef
Obstetrics & Gynecology
Errata

Obstetrics & Gynecology, 108(6): 1556.

PDF (127)
Obstetrics & Gynecology
Pregnancy Outcomes for Women With Placenta Previa in Relation to the Number of Prior Cesarean Deliveries
Grobman, WA; Gersnoviez, R; Landon, MB; Spong, CY; Leveno, KJ; Rouse, DJ; Varner, MW; O'Sullivan, MJ; Sibai, BM; Langer, O; Thorp, JM; Ramin, SM; Mercer, BM; for the National Institute of Child Health and Human Development (NICHD) Maternal–Fetal Medicine Units (MFMU) Network, ; Moawad, AH; Caritis, SN; Harper, M; Wapner, RJ; Sorokin, Y; Miodovnik, M; Carpenter, M
Obstetrics & Gynecology, 110(6): 1249-1255.
10.1097/01.AOG.0000292082.80566.cd
PDF (581) | CrossRef
Back to Top | Article Outline

© 2006 The American College of Obstetricians and Gynecologists

Login

Article Tools

Images

Share