Skip Navigation LinksHome > January 2004 - Volume 103 - Issue 1 > Correlation of Platelet Count With Second-Look Laparotomy Re...
Obstetrics & Gynecology:
doi: 10.1097/01.AOG.0000102703.21556.0B
Original Research

Correlation of Platelet Count With Second-Look Laparotomy Results and Disease Progression in Patients With Advanced Epithelial Ovarian Cancer

Bozkurt, Nuray MD*; Yuce, Kunter MD†; Basaran, Mustafa MD†; Kose, Faruk MD‡; Ayhan, Ali MD†

Free Access
Article Outline
Collapse Box

Author Information

From the *Gazi University Faculty of Medicine, Department of Obstetrics and Gynecology; †Hacettepe University Faculty of Medicine, Department of Obstetrics and Gynecology, ‡SSK Ankara Maternity Hospital, Department of Obstetrics and Gynecology, Ankara, Turkey.

Received March 26, 2003. Received in revised form June 22, 2003. Accepted August 28, 2003.

Address reprint requests to: Nuray Bozkurt, MD, Tirebolu Sokak 27/18 Omrumce Apt, Yukari Ayranci Ankara/Turkey; e-mail: nmbozkurt@yahoo.com

Collapse Box

Abstract

OBJECTIVE: To evaluate the significance of preoperative platelet counts in advanced epithelial ovarian cancer with respect to second-look laparotomy results and disease progression.

METHODS: We prospectively evaluated 37 consecutive patients with advanced epithelial ovarian cancer who underwent primary surgical treatment. In addition to platelet counts, all patients were evaluated with respect to age, gravida, parity, and stage and grade of tumor. Thirty-six patients had stage III, and 1 patient had stage IV disease. Optimal debulking (diameter of residual tumor, less than 1 cm) was performed in all patients who subsequently received adjuvant chemotherapy (platin-paclitaxel). According to second-look laparotomy and follow-up results patients were divided into 2 groups. The first group had negative second-look laparotomy or no evidence of disease during follow-up (n = 20), and the second group had positive second-look laparotomy or progressive disease (n = 17). Sensitivity and specificity values were calculated for different cutoff values of platelet counts with receiver operating characteristic curve analysis.

RESULTS: Age, gravida, and parity were not significantly different compared with controls (P > .05). Mean platelet counts were 371 × 109/L and 446 × 109/L in the first and second groups, respectively (P = .03). Different cutoff values of platelet counts for the diagnosis of thrombocytosis were evaluated. A cutoff value of 380 × 109/L had sensitivity 77% and specificity 60% for recurrence, whereas a cutoff value of 400 × 109/L had sensitivity 59% and specificity 65%. Area under the curve (± standard error) was 0.72 ± 0.08 (P = .026).

CONCLUSION: In patients with progressive disease and positive second-look laparotomy, preoperative platelet counts were significantly higher compared with patients with no evidence of disease on follow-up.

LEVEL OF EVIDENCE: II-2

The association between elevated platelet counts and malignant neoplasia has been known since first reported by Reiss in 1872.1 Although the exact mechanism is not known, it is thought to be a humorally mediated response.2 Previously, thrombocytosis was reported with various pelvic and extrapelvic solid tumors.3

Gynecologic malignancies shown to be associated with thrombocytosis were ovarian cancer, vulvar carcinoma,4 cervical cancer,5,6 and endometrial cancer.7 Studies on the prognostic significance of thrombocytosis in gynecologic malignancies reported conflicting results. For ovarian cancer, Menczer et al8 reported poor prognosis associated with increased platelet counts. On the other hand, Zeimet et al9 found no effect on survival.

In this study, we evaluated the correlation of pretreatment platelet counts on disease progression and second-look laparotomy results in patients with advanced epithelial carcinoma of ovary. Additionally by using receiver operating characteristic curve analysis, different cutoff levels of platelet counts were also evaluated with sensitivity and specificity values for predicting disease progression and second-look laparotomy result.

Back to Top | Article Outline

MATERIALS AND METHODS

Between 1999 and 2001 in Hacettepe University Faculty of Medicine, Department of Obstetrics and Gynecology optimally debulked (defined as the largest diameter of residual tumor less than 1 cm) 37 patients with advanced epithelial carcinoma of ovary were evaluated. All patients were treated with primary surgery followed by adjuvant chemotherapy. After 6 cycles of platin-paclitaxel combination, second-look laparotomy was offered to all patients with good performance status. Second-look laparotomy was performed in patients suitable for and willing the undergo procedure (n = 20). Patients with poor performance and/or refusing second-look laparotomy (n = 12) were prospectively followed for disease progression with physical examination, ultrasonography, and serum CA 125 determinations. Five patients were found to be not eligible for the second-look laparotomy procedure (Figure 1).

Figure 1
Figure 1
Image Tools

Patients’ age, gravida, parity, operative findings, stage, grade, serum CA 125 levels, and platelet count were prospectively recorded variables. Platelet counts were performed within 5 days before the operation. Thirty-seven patients with advanced epithelial ovarian cancer underwent primary surgical treatment. Thirty-six patients had stage III disease, and one had stage IV. Optimal debulking was performed in all patients who subsequently received chemotherapy in the form of platin-paclitaxel combination. According to second-look laparotomy or follow-up results patients were divided into 2 groups. The first group had negative second-look laparotomy results or no evidence of disease during follow-up (n = 20), and the second group had positive second-look laparotomy results or progressive disease during follow-up (n = 17). Progressive disease was defined as failure to respond to chemotherapy or progression during the first 6 months after completion of chemotherapy. Student t test and Wilcoxon signed rank test were used. Sensitivity and specificity values for different cutoff levels of platelet counts were calculated with receiver operator characteristic curve method. Statistical significance level was set to P < .05.

Back to Top | Article Outline

RESULTS

Age, gravida, and parity were not significantly different as compared with controls (P > .05) (Table 1). Mean platelet counts (± standard deviation) were 371 × 109/L ± 94 × 109/L and 446 × 109/L ± 100 × 109/L in the first and second groups, respectively (P = .03).

Table 1
Table 1
Image Tools

Using receiver operator characteristic curve analysis, the following sensitivity and specificity values were calculated for different cutoff points. Area under the receiver operator characteristic curve (± standard error) was 0.72± 0.08 (P = .026). The cutoff value showing the best equilibrium between sensitivity and specificity was 380 × 109/L (sensitivity of 77% and specificity of 60%). Negative and positive predictive values for this cutoff were 75% and 62%, respectively. Cutoff value of 400 × 109/L had a sensitivity of 59% with a specificity of 65%. Cutoff value of 450 × 109/L, the other frequently used threshold value for the diagnosis of thrombocytosis, yielded a lower sensitivity of 41% and a higher specificity of 75% (Figure 2).

Figure 2
Figure 2
Image Tools
Back to Top | Article Outline

DISCUSSION

Malignancy is a well known cause of reactive (secondary) thrombocytosis. It was found to be associated in 30–60% of patients with nongynecologic10,11 and 10–30% in gynecologic malignancies.3,5,11,12

Underlying pathophysiologic mechanisms were complex and gained importance after reports regarding the effect on prognosis. Although the exact mechanism to explain increased production is not known, it is thought to be a paraneoplastic syndrome involving interleukin-6 (IL-6), thrombopoietin.13,14 Humoral mediators stimulating platelet production might be produced by malignant cells themselves. Therefore, the degree of elevation of platelets could be a marker of tumor load. This, in turn, might be associated with poor prognosis. Probably the same humoral mediators also have a role in tumor growth, metastasis, or both. One of the best-studied mediators of increased production of platelets in cancer patients was IL-6.14 IL-6 is a well known stimulator of megakaryocytes.13 It has a therapeutic value in chemotherapy-induced thrombocytopenia in patients with ovarian cancer.15 IL-6 levels in ascites also were shown to be correlated with reactive thrombocytosis in patients with epithelial ovarian cancer.16

Thrombocytosis was found to be an independent prognostic factor in patients with cervical12 and endometrial17 cancers. Contrary to these findings, it is not found to be a prognostic factor in vulvar carcinoma.3 In epithelial ovarian cancer, Menczer et al8 reported poor prognosis in patients with thrombocytosis in their series. Contrary to these findings Zeimet et al9 reported thrombocytosis in 38% and found no association with prognosis. In this study, volume of ascites and hemoglobin concentrations were independent factors associated with thrombocytosis.

Different cutoff values between 300 × 109 /L and 450 × 109 /L for thrombocytosis were used in different studies. The two most frequently used cutoff levels to define thrombocytosis were 350 × 109 /L4,11 and 400 × 109 /L3,5 in previous studies. In this study, instead of grouping patients according to a cutoff level, we compared the mean values. In the second group the mean platelet count was significantly higher than in the first group (446 ± 100 × 109 /L versus 371 ± 94 × 109 /L, P = .03). With this finding in mind, we performed receiver operator characteristic curve analysis to determine the effect of different cutoff values on disease progression. Patients in the second group can be predicted with 59% sensitivity and 65% specificity at the cutoff value of 400 × 109/L. When the cutoff value was increased to 450 × 109/L, sensitivity and specificity were calculated as 41% and 75%, respectively. Finding of increased platelet count may reflect increased tumor burden, but also as proposed by Hernandez et al,5 might be a marker of tumor growth. Another mechanism for poor prognosis associated with thrombocytosis was the possibility that excess platelets might facilitate the vascular adhesion and distant metastasis of circulating malignant cells. Thrombospondin-1 might be involved this process.5 Although hematological metastasis is less important in the pathogenic mechanism of ovarian cancer, this might have a role in distant metastases. Another mechanism for association of aggressive behavior of tumor cells was platelets producing mediators affecting tumor growth. Also, a platelet cast around malignant cells has a role in protection from immune system.

In conclusion, high platelet count in advanced stage epithelial ovarian carcinoma is associated with increased risk of disease progression and positive second-look laparotomy results. Thrombocytosis might be an important marker of aggressive tumor behavior, and epithelial platelets might themselves produce mediators affecting tumor growth cancer.

Back to Top | Article Outline

REFERENCES

1. Tranum BL, Haut A. Thrombocytosis: platelet kinetics in neoplasia. J Lab Clin Med 1974 Nov;84:615–9.

2. Estrov Z, Talpaz M, Mavligit G, Pazdur R, Harris D, Greenberg SM, et al. Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. Am J Med 1995;98:551–8.

3. Lavie O, Comerci G, Daras V, Bolger BS, Lopes A, Monaghan JM. Thrombocytosis in women with vulvar carcinoma. Gynecol Oncol 1999;72:82–6.

4. Hefler L, Mayerhofer K, Leibman B, Obermair A, Reinthaller A, Kainz C, et al. Tumor anemia and thrombocytosis in patients with vulvar cancer. Tumour Biol 2000;21:309–14.

5. Hernandez E, Donohue KA, Anderson LL, Heller PB, Stehman FB. The significance of thrombocytosis in patients with locally advanced cervical carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2000;78:137–42.

6. Hernandez E, Heller PB, Whitney C, Diana K, Delgado G. Thrombocytosis in surgically treated stage IB squamous cell cervical carcinoma (A Gynecologic Oncology Group study). Gynecol Oncol 1994;55(3 Pt 1):328–32.

7. Gucer F, Moser F, Tamussino K, Reich O, Haas J, Arikan G, et al. Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecol Oncol 1998;70:210–4.

8. Menczer J, Schejter E, Geva D, Ginath S, Zakut H. Ovarian carcinoma associated thrombocytosis: correlation with prognostic factors and with survival. Eur J Gynaecol Oncol 1998;19:82–4.

9. Zeimet AG, Marth C, Muller-Holzner E, Daxenbichler G, Dapunt O. Significance of thrombocytosis in patients with epithelial ovarian cancer. Am J Obstet Gynecol 1994;170:549–54.

10. Costantini V, Zacharski LR, Moritz TE, Edwards RL. The platelet count in carcinoma of the lung and colon. Thromb Haemost 1990;64:501–5.

11. Rodriguez GC, Clarke-Pearson DL, Soper JT, Berchuck A, Synan I, Dodge RK. The negative prognostic implications of thrombocytosis in women with stage IB cervical cancer. Obstet Gynecol 1994;83:445–8.

12. Hernandez E, Lavine M, Dunton CJ, Gracely E, Parker J. Poor prognosis associated with thrombocytosis in patients with cervical cancer. Cancer 1992;69:2975–7.

13. Kaser A, Brandacher G, Steurer W, Kaser S, Offner FA, Zoller H, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001;98:2720–5.

14. Araneda M, Krishnan V, Hall K, Kalbfleisch J, Krishnaswamy G, Krishnan K. Reactive and clonal thrombocytosis: proinflammatory and hematopoietic cytokines and acute phase proteins. South Med J 2001;94:417–20.

15. D’Hondt V, Humblet Y, Guillaume T, Baatout S, Chatelain C, Berliere M, et al. Thrombopoietic effects and toxicity of interleukin-6 in patients with ovarian cancer before and after chemotherapy: a multicentric placebo-controlled, randomized phase Ib study. Blood 1995;85:2347–53.

16. Gastl G, Plante M, Finstad CL, Wong GY, Federici MG, Bander NH, et al. High IL-6 levels in ascitic fluid correlate with reactive thrombocytosis in patients with epithelial ovarian cancer. Br J Haematol 1993;83:433–41.

17. Scholz HS, Petru E, Gucer F, Haas J, Tamussino K, Winter R. Preoperative thrombocytosis is an independent prognostic factor in stage III and IV endometrial cancer. Anticancer Res 2000;20:3983–5.

Cited By:

This article has been cited 8 time(s).

Journal of Obstetrics and Gynaecology
Platelet volume as a parameter for platelet activation in patients with endometrial cancer
Oge, T; Yalcin, OT; Ozalp, SS; Isikci, T
Journal of Obstetrics and Gynaecology, 33(3): 301-304.
10.3109/01443615.2012.758089
CrossRef
Oncology
Preoperative predictors for residual tumor after surgery in patients with ovarian carcinoma
de Jong, D; Eijkemans, MJ; Fong, SL; Gerestein, CG; Kooi, GS; Baalbergen, A; van der Burg, EL; Burger, CW; Ansink, AC
Oncology, 72(): 293-301.
10.1159/000113051
CrossRef
Future Oncology
Role of systemic inflammatory response in predicting survival in patients with primary operable cancer
Roxburgh, CSD; McMillan, DC
Future Oncology, 6(1): 149-163.
10.2217/FON.09.136
CrossRef
Journal of Cancer Research and Clinical Oncology
Preoperative hemoglobin and platelet count and poor prognostic factors in patients with endometrial carcinoma
Metindir, J; Dilek, GB
Journal of Cancer Research and Clinical Oncology, 135(1): 125-129.
10.1007/s00432-008-0430-2
CrossRef
Artificial Intelligence in Medicine
Ovarian cancer diagnosis with complementary learning fuzzy neural network
Tan, TZ; Quek, C; Ng, GS; Razvi, K
Artificial Intelligence in Medicine, 43(3): 207-222.
10.1016/j.artmed.2008.04.003
CrossRef
British Journal of Pharmacology
Platelet-cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation
Jurasz, P; Alonso-Escolano, D; Radomski, MW
British Journal of Pharmacology, 143(7): 819-826.
10.1038/sj.bjp.0706013
CrossRef
Clinical & Experimental Metastasis
Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis
Holmes, CE; Levis, JE; Ornstein, DL
Clinical & Experimental Metastasis, 26(7): 653-661.
10.1007/s10585-009-9264-9
CrossRef
Gynecologic Oncology
The value of preoperative platelet count in the prediction of cervical involvement and poor prognostic variables in patients with endometrial carcinoma
Ayhan, A; Bozdag, G; Taskiran, C; Gultekin, M; Yuce, K; Kucukali, T
Gynecologic Oncology, 103(3): 902-905.
10.1016/j.ygyno.2006.05.034
CrossRef
Back to Top | Article Outline

© 2004 The American College of Obstetricians and Gynecologists

Login

Article Tools

Images

Share