Skip Navigation LinksHome > March 2005 - Volume 16 - Issue 2 > Residential Radon and Risk of Lung Cancer: A Combined Analys...
Text sizing:
doi: 10.1097/01.ede.0000152522.80261.e3
Original Article

Residential Radon and Risk of Lung Cancer: A Combined Analysis of 7 North American Case-Control Studies

Krewski, Daniel*; Lubin, Jay H.†; Zielinski, Jan M.*‡; Alavanja, Michael§; Catalan, Vanessa S.∥; Field, R William**¶; Klotz, Judith B.††; Létourneau, Ernest G.‡‡; Lynch, Charles F.¶; Lyon, Joseph I.§§; Sandler, Dale P.∥∥; Schoenberg, Janet B.††; Steck, Daniel J.¶¶; Stolwijk, Jan A.***; Weinberg, Clarice†††; Wilcox, Homer B.††

Free Access
Supplemental Author Material
Article Outline
Collapse Box

Author Information

From the*McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada; the †Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD; the ‡Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; the §Occupational Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Washington, DC; the ∥Centre of Excellence for Children and Adolescents with Special Needs, Lakehead University, Thunder Bay, Ontario, Canada; the Departments of ¶Epidemiology and **Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa; ††Cancer Epidemiology, Department of Health and Senior Services, Trenton, New Jersey; the ‡‡Radiation Protection Bureau, Health Protection Branch, Health Canada, Ottawa, Ontario, Canada; the§§Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah; the ∥∥Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; the ¶¶Department of Physics, St. John's University, Collegeville, Minnesota; the ***School of Medicine, Yale University, New Haven, Connecticut; and the †††Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Submitted 14 October 2004; final version accepted 19 November 2004.

Salary support for R. W. Field, C. Lynch, and D. Steck provided in part by grant no. R01 CA85942 from US NCI and grant no. P30 ES05695 from U.S. NIEHS. Research supported by grants from Canadian Institutes of Health Research and Natural Sciences and Engineering Research Council of Canada. Additional support provided by Health Canada and the U.S. Department of Energy.

Supplemental material for this article is available with the online version of the Journal at www.epidem.com.

Correspondence: Daniel Krewski, McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, One Stewart Street, Room 320, Ottawa, Ontario, Canada K1N 6N5. E-mail: dkrewski@uottawa.ca.

Collapse Box


Background: Underground miners exposed to high levels of radon have an excess risk of lung cancer. Residential exposure to radon is at much lower levels, and the risk of lung cancer with residential exposure is less clear. We conducted a systematic analysis of pooled data from all North American residential radon studies.

Methods: The pooling project included original data from 7 North American case–control studies, all of which used long-term α-track detectors to assess residential radon concentrations. A total of 3662 cases and 4966 controls were retained for the analysis. We used conditional likelihood regression to estimate the excess risk of lung cancer.

Results: Odds ratios (ORs) for lung cancer increased with residential radon concentration. The estimated OR after exposure to radon at a concentration of 100 Bq/m3 in the exposure time window 5 to 30 years before the index date was 1.11 (95% confidence interval = 1.00–1.28). This estimate is compatible with the estimate of 1.12 (1.02–1.25) predicted by downward extrapolation of the miner data. There was no evidence of heterogeneity of radon effects across studies. There was no apparent heterogeneity in the association by sex, educational level, type of respondent (proxy or self), or cigarette smoking, although there was some evidence of a decreasing radon-associated lung cancer risk with age. Analyses restricted to subsets of the data with presumed more accurate radon dosimetry resulted in increased estimates of risk.

Conclusions: These results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted using miner data and consistent with results from animal and in vitro studies.

Back to Top | Article Outline


Click on the links below to access all the ArticlePlus for this article.

Please note that ArticlePlus files may launch a viewer application outside of your web browser.

* http://links.lww.com/EDE/A125

* http://links.lww.com/EDE/A126

* http://links.lww.com/EDE/A127

Radon-222 is a decay product of radium-226 and ultimately of uranium-238 (2 elements that are ubiquitous in soils and rocks, thereby providing a continual source of radon). Radon can accumulate in enclosed areas such as underground mines and houses. When inhaled into the lung, alpha particles emitted by short-lived decay products of radon can damage cellular DNA. Cellular mutagenesis studies, experimental research in animals, and occupational epidemiologic studies have established radon as a human lung carcinogen.1,2

A combined analysis of lung cancer mortality among 11 cohorts of underground miners confirmed that high levels of exposure to radon are associated with increased lung cancer risk.3 A subsequent evaluation of updated miner data conducted by the National Research Council2 estimated that 10% to 15% of the 157,400 lung cancer deaths occurring annually in the United States may be attributed to residential radon, with an uncertainty range of 3300 to 32,000 deaths.4

Results of miner studies unambiguously demonstrate an excess risk of lung cancer resulting from occupational exposure to radon. However, differences in breathing characteristics of miners and residents at home are substantial, as are other differences between the mine and home environments.2 Although low-exposed miners experienced exposures comparable to long-term residence in high radon houses, the mean cumulative exposure among miners is approximately 30-fold higher than that associated with long-term residency in a typical home.2

A combined analysis of data from residential radon case–control studies would help to resolve ambiguity in the evidence of increased lung cancer risk at residential radon exposure levels.5 To date, 20 case–control studies of residential radon and lung cancer have been completed, including 7 studies in North America, 11 in Europe, and 2 in China (Table 1). Some of these studies reported a positive or weakly positive association between lung cancer risk and residential radon concentrations, whereas others have reported results consistent with no association. To date, no case–control study has reported a statistically significant negative association.

Table 1
Table 1
Image Tools

Based on results reported by the original investigators, the excess odds ratios for lung cancer at a radon concentration of 100 Bq/m3 ranged from −0.05 in Shenyang, China, to 0.56 in New Jersey (Table 1). Although excess odds ratios for all but 2 studies (West Germany and Shenyang, China) were positive, confidence limits included the null value of zero in all but 4 studies (Iowa, the Swedish national study, the Czech Republic, and Gansu, China). These results reflect a range of lung cancer risks, including the possibility of no risk, suggesting the need for an overall assessment of the findings from different studies.

Metaanalyses of published odds ratios from North American and other residential radon case–control studies found a statistically significant increase in lung cancer risk.6,7 However, the odds ratios in 13 studies included in the more recent metaanalysis exhibited heterogeneity among studies, possibly as a result of the inability to directly adjust for other confounding factors.

To better characterize results for these seemingly disparate studies, and to obtain direct estimates of potential lung cancer risks associated with radon in homes, we conducted a combined analysis of the original data from all North American case–control studies of residential radon and lung cancer, including studies in New Jersey,8,9 Winnipeg,10,11 Missouri nonsmoking women (denoted Missouri-I),12 Missouri women (Missouri-II),13 Iowa,14,15 and Connecticut and Utah–South Idaho.16 These studies included a total of 3662 cases and 4966 controls. The specific objectives of this combined analysis are to test the null hypothesis that residential radon does not increase risk of lung cancer, to evaluate the consistency of effects among the different studies, to evaluate variations in the exposure–response relationship with other lung cancer risk factors, and to compare risk estimates from the pooled residential data with extrapolations from miner-based risk models.

Back to Top | Article Outline


Subject Selection

An overview of the studies included in the present combined analysis is provided in the appendix (available with the electronic version of this article). In all studies, cases were ascertained through state and provincial cancer registries and were histologically or cytologically confirmed. Controls were population-based, matched to cases on the basis of age (± 5 years) and sex (Iowa, Missouri-I, Missouri-II, and New Jersey included only females). Smoking status was used as a matching variable in Connecticut, Utah–South Idaho, and Missouri-II. Frequency matching or randomized recruitment17 was used for control selection, except in New Jersey and Winnipeg, where pair matching was used.

Back to Top | Article Outline
Radon Dosimetry

All studies used long-term α-track detectors to measure the concentration of radon progeny in indoor air for 12 months. Although the primary radon measurements in Missouri-II were made with a new technology that monitors alpha particles embedded in glass surfaces, we did not use these glass-based measurements in the present analysis to maintain comparable dosimetry among studies. In New Jersey, a small number of measurements (9%) made using short-term (3–7 days) charcoal canisters were also excluded from this analysis. Contemporaneous measurements were made in homes that subjects had occupied or were currently occupying; these measurements were used to estimate historical radon concentrations in those homes. Detectors were placed in the living area and bedroom areas of the home in which subjects had spent the majority of their time. The mean radon concentrations measured by α-track dosimeters in the living area were highest in Winnipeg (131 Bq/m3) and Iowa (127 Bq/m3) and lowest in New Jersey (25 Bq/m3). Becquerels per cubic meter (Bq/m3) is the SI measure of activity, with 1 Bq equaling 1 disintegration per second. Pico-curies per liter (pCi/L) is an historical unit still commonly used, with 1 pCi/L = 37 Bq/m3.

In most studies, an attempt was made to monitor homes occupied for at least 1 year within the exposure time window considered to be most directly related to lung cancer risk. In New Jersey, only the last residence occupied for at least 10 years during the exposure time window 10 to 30 years before recruitment was monitored. The Iowa study also measured only one home, but enrollment required occupancy for 20 years or more in the current home. Based on the extensive analysis of cohort studies conducted by the National Research Council,2 the present analysis is focused on the exposure time window 5 to 30 years before the index date. The proportion of time within this exposure time window covered by radon measurements ranged from 75.2% in Winnipeg to 92.4% in Iowa.

Back to Top | Article Outline
Statistical Analysis

Data were aggregated using a common format. Information included age at index date (date of diagnosis for cases and date of interview or recruitment for controls), year of ascertainment, source of information (subject or proxy interview), sex, smoking-related variables, education, family income, ethnicity, and historical profiles of radon concentrations in houses based on detector measurements or on the original investigators’ best estimates. All analyses were conducted using conditional likelihood regression18 with a linear model for the odds ratio (OR) of the form OR(x) = 1 + β x, where x is the mean residential radon concentration in the exposure time window2 in Bq/m3 and β is the excess odds ratio for each unit increase in x. This model was fit with the PECAN module in the Epicure software package using the conditional analytic method of parameter estimation.19 Results are based on the best estimates of radon concentrations, including both measured and imputed radon values supplied by the collaborating investigators. (There was virtually no difference in the estimated excess odds ratios when the imputed values provided by the collaborating investigators were replaced with imputed values corresponding to the study-specific control means, as recommended by Weinberg et al.20) We stratified baseline risk by sex, age at index date (<60, 60–64, 65–69, 70–74, 75+ years), number of cigarettes smoked per day (never-smoker, 1–9, 10–19, 20–29, 30+), duration of cigarette smoking (never, 1–24, 25–34, 35–44, 45+ years), number of residences occupied (<3, 3+), years with α-track monitoring within the exposure time window (<20, 20+ years), and an indicator variable for each study to control for confounding. We also included an offset parameter to control for the randomized recruitment design in the Connecticut, Utah–South Idaho, and Missouri-II studies.

Although our main analyses are based on the full dataset comprising 3662 cases and 4966 controls, we also analyzed restricted datasets. Restrictions focused on subjects for which measured, rather than imputed, radon concentrations were used for dosimetry21 and on subjects who occupied only 1 or 2 residences. The latter restriction potentially offsets both the reduction in the range of exposures conferred by population mobility5,22,23 and exposure measurement error associated with the monitoring of former residences. Data restrictions were imposed under the assumption that the restrictions resulted in more accurate radon dosimetry. The restricted datasets involved fewer subjects; for example, there were 1910 cases and 2651 controls in the subgroup of subjects for which measured rather than imputed radon concentrations were available for at least 20 years within the exposure time window of interest and who had occupied, at most, 2 residences.

Back to Top | Article Outline


Characteristics of Study Subjects

The majority of the study subjects (86%) had some secondary school or higher education. Among cases, 38% were diagnosed with adenocarcinoma, 22% with squamous cell carcinoma, and 16% with small/oat cell carcinoma. Because 4 studies (Iowa, Missouri-I, Missouri-II and New Jersey) enrolled only women (who typically spent more time in the home than men), the database includes more women (2556 cases and 3596 controls) than men (1106 cases and 1370 controls). Smoking status varied among the study participants; although some studies were restricted to nonsmoking cases, the majority of cases were smokers.

Back to Top | Article Outline
Risk Estimates

Table 2 shows estimated odds ratios for lung cancer by categories of mean radon concentration and the excess odds ratio at 100 Bq/m3, along with 95% confidence intervals (CIs). The excess odds ratio for individual studies ranged from 0.01 (<0.00–0.42) in Missouri-I to 0.56 (−0.22–2.97) per 100 Bq/m3 in New Jersey but did not demonstrate heterogeneity (P = 0.59). The overall results are also presented in Figure 1, where the abscissa of each category-specific odds ratio is the mean radon concentration within its category. Odds ratios exhibit no apparent evidence of nonlinearity throughout the range of radon concentrations observed in these studies.

Table 2
Table 2
Image Tools
Figure 1
Figure 1
Image Tools
Back to Top | Article Outline
Effect Modification

We also examined potential modifying effects of demographic and smoking-related factors (Table 3). There was no apparent heterogeneity in the excess odds ratio estimates by sex (P = 0.21) or educational level (P = 0.23), although there was some evidence of decreasing radon-associated lung cancer risk with age (P = 0.09). Overall, 57% of case information was derived from the subjects themselves rather than proxies. The excess odds ratio was higher when information was obtained from the subject rather than from a proxy. There were no substantial differences in the excess odds ratios by categories of cigarette smoking, number of cigarettes smoked per day (P = 0.94), duration of cigarette smoking (P = 0.55), or time since quitting smoking (P = 0.89).

Table 3
Table 3
Image Tools
Back to Top | Article Outline

The histologic type of lung cancer was available for all but 166 lung cancer cases. There was a preponderance of adenocarcinomas (1380 of 3662 cases) as a result of the emphasis on women and (current) nonsmokers within several of the case series. The largest excess odds ratio (0.23 per 100 Bq/m3) was observed for small cell carcinoma, although the confidence limits overlapped with other histologic types of lung cancer (Table 4). Only lesions of unknown histology failed to demonstrate a positive excess odds ratio (−0.16 per 100 Bq/m3). Because of the reduced number of subjects, all of the confidence limits for the excess odds ratios for specific histologic types of lung cancer included zero. Similar results were obtained when cases were restricted by sex.

Table 4
Table 4
Image Tools
Back to Top | Article Outline
Data Restriction

Table 5 illustrates the consequences of increasingly stringent restrictions on radon dosimetry based on increasing the number of years in the 5- to 30-year exposure time window for which radon measurements were available using α-track monitors and limiting the number of residences occupied by the study subjects. With either no restrictions on mobility or limiting the analysis to subjects who lived in 1 or 2 homes, the excess odds ratios increased with increasing number of years monitored. Excess odds ratios were uniformly larger when data were restricted to subjects living in 1 or 2 houses as compared with no restriction on mobility.

Table 5
Table 5
Image Tools
Back to Top | Article Outline


Although radon is one of the most extensively investigated human lung carcinogens, the weight of evidence for radon carcinogenicity derives largely from occupational studies of underground miners24 exposed to much higher radon levels than those typically encountered in homes. There are also marked differences between the conditions of exposure in mines and in houses. These differences include the relative proportion of radon itself to its decay products (which affects the amount of energy deposited in the lung), respiratory rate (which affects the rate radon and its decay products are inhaled and retained in the lung), and particle size distributions (which affect the fraction of radon progeny attached to particles and the depth of penetration and site of deposition within the lung). All of these factors complicate the direct extrapolation of occupational data on radon lung cancer risks to residential settings.2,25

Laboratory studies have shown direct damage of cellular DNA after the traversal of cultured mammalian cells by single alpha particles and provide direct evidence of the potential for radon carcinogenicity at low levels of exposure.2,26 Indirect genotoxic effects of radon (including mutation and micronucleated cells) and nongenotoxic effects of radon (including sister chromatid exchange and cellular proliferation) may play a role in carcinogenesis and have been demonstrated in unexposed cells in the neighborhood of cells irradiated with alpha particles.27 Occupational studies have also demonstrated an inverse dose-rate effect of radon,28,29 which results in higher lung cancer risks when the same cumulative exposure is experienced over a longer period of time.

The National Research Council2 has estimated that residential radon may account for 10% to 15% of the lung cancer burden in the United States. However, there has been no unambiguous direct evidence of an increased lung cancer risk associated with residential exposures. The present pooled analysis has several strengths. It provides the largest aggregation of data on residential radon lung cancer risks to date. Radon dosimetry was based on long-term α-track monitors placed in current and former homes of the study subjects. Case and control selection was population-based, and we had histologic or pathologic confirmation of case diagnosis. Finally, the studies included a wide range in residential radon exposures and data on modifying factors, including age, sex, and smoking.

The analysis is inherently limited by the quality and reporting of the original residential radon studies, as well as the need for a common data format. For example, in the interest of comparability across studies, we used air radon measurements in living areas to characterize exposure in the Iowa study, even though those investigators had detailed radon measurements both inside and outside the house with links to historical patterns of mobility.14 Results for specific histologic types of lung cancer also require cautious interpretation because only the Missouri and Iowa studies obtained consensus diagnoses by a panel of blinded expert pathologists. Brownson et al.30 observed overall concordance between original histologic diagnoses of lung cancer and a consensus histopathologic review of only 66%.

Overall, the odds ratios for lung cancer increased with increasing radon exposure categories, with an odds ratio of 1.37 (0.98–1.92) for concentrations exceeding 200 Bq/m3 relative to concentrations under 25 Bq/m3. The overall estimate of the excess odds ratio for lung cancer was 0.11 (0.00–0.28) per 100 Bq/m3. Restrictions that increased coverage of the exposure time window resulted in increasing excess odds ratios. For example, those subjects who had resided in only 1 or 2 houses in the period 5 to 30 years before recruitment with at least 20 years covered by α-track monitors had an excess odds ratio of 0.18 (0.02–0.43) per 100 Bq/m3.

It is possible that the findings for the restricted data were the consequence of differentially excluding participants in the negative studies. To explore this, we examined the proportions of cases and controls from each study who contributed to the combined risk estimates. There were slightly larger proportions of subjects from Iowa (cases and controls) and Connecticut (cases only) with increasing stringency of restrictions, smaller proportions from Missouri-II and Winnipeg and similar proportions from Missouri-I, New Jersey, and Utah–South Idaho. Overall, however, there was little indication that the increasing excess odds ratios in Table 5 are the result of differential contributions from particular studies.

Our overall excess odds ratio estimate of 0.11 is consistent with the predicted excess odds ratio of 0.12 (0.02–0.25) per 100 Bq/m3 based on a linear model developed by the National Research Council2 using data on low-exposed miners whose exposures were similar to long-term residents of high radon homes; similar risk projections were also obtained from risk models derived from the full range of miner data by the National Research Council. The consistency of the residential estimates of risk with the results from data on all miners and low-exposed miners increases the confidence that current radon estimates are not the result of unknown latent factors such as confounding or study-specific biases.

The residential radon measurements in these case–control studies are subject to measurement error. No formal adjustment for this source of error was attempted. Such adjustments require repeated radon measurement in the same home, which were generally not available. Adjustment for exposure measurement error in studies conducted in South West England,31 Sweden,32 and Gansu, China33 resulted in an increase in the estimated excess odds ratio of 50% or more. Our restricted analyses of the 7 North American case–control studies resulted in an increase in the estimated excess odds ratio of approximately 50%, most likely by reducing exposure misclassification. Although the increased risks observed in the subset analyses may be attributable to some unidentified systematic or differential bias, we are unaware of specific sources of bias that could affect our analyses. In most case–control studies, nondifferential misclassification of exposure results in a bias toward the null.34–36 Field et al.37 have recently demonstrated that empiric models with improved retrospective radon exposure estimates were more likely to detect an association between prolonged residential radon exposure and lung cancer.

Collectively, our results provide direct evidence of an association between residential radon exposure and lung cancer, a finding predicted by downward extrapolation of epidemiologic data on underground miners exposed to higher levels of radon and consistent with toxicologic results from animal and in vitro studies. Additional support for this conclusion has been provided by a combined analysis of the 2 Chinese case–control studies,38 involving a total of 1050 cases and 1996 controls. Further information on residential radon lung cancer risks will be provided by an ongoing analysis of European case–control studies,39 to be followed by a global combined analysis of all residential radon case–control studies.

Back to Top | Article Outline


We acknowledge the helpful input of the following persons who served on the International Steering Committee for the North American combined analysis: Ken Chadwick (Commission of European Communities, Radiation Protection Program), Susan Conrath (U.S. Environmental Protection Agency), Sarah Darby (Oxford University), Evan Douple (U.S. National Academy of Sciences), Colin Muirhead (U.K. National Radiation Protection Board), and Susan Rose (U.S. Department of Energy). We are grateful to Huixia Jiang for assistance with the combined analysis.

Back to Top | Article Outline


1. International Agency for Research on Cancer (IARC). Man-made Fibres and Radon. Lyon, France: IARC Press; 1988. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 43.

2. National Research Council (US). Committee on the Health Risks of Exposure to Radon (BEIR VI). Health Effects of Exposure to Radon. Committee on the Biological Effects of Ionizing Radiations, Board of Radiation Effects Research, Committee on Life Sciences, National Research Council. Washington, DC: National Academy Press; 1999.

3. Lubin JH, Boice JD Jr, Edling C, et al. Radon and Lung Cancer Risk: A Joint Analysis of 11 Underground Miners Studies. Washington, DC: US Department of Health and Human Services; 1994.

4. Krewski D, Rai SN, Zielinski JM, et al. Characterization of uncertainty and variability in residential radon cancer risks. Ann N Y Acad Sci. 1999;895:245–272.

5. Lubin JH, Boice JDJr, Samet JM. Errors in exposure assessment, statistical power and the interpretation of residential radon studies. Radiat Res. 1995;144:329–341.

6. Lubin JH, Boice JDJr. Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst. 1997;89:49–57.

7. Lubin JH. Discussion: indoor radon and risk of lung cancer. Radiat Res. 1999;151:105–107.

8. Schoenberg JB, Klotz JB, Wilcox HB, et al. Case–control study of residential radon and lung cancer among New Jersey women. Cancer Res. 1990;50:6520–6524.

9. Schoenberg JB, Klotz JB, Wilcox HB, et al.A case–control study of radon and lung cancer among New Jersey women. In: Cross FT, ed. Twenty-Ninth Hanford Symposium on Health and the Environment, Indoor Radon and Lung Cancer: Reality or Myth? Sponsored by the United States Department of Energy and Battelle, Pacific Northwest Laboratories; Richland, Washington. Columbus: Battelle Press; 1992:905–918.

10. Létourneau EG, Krewski D, Choi NW, et al. Case–control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol. 1994;140:310–322.

11. Létourneau EG, Krewski D, Choi NW, et al. Authors’ reply to letter re: case–control study of residential radon and lung cancer in Winnipeg, Manitoba, Canada. Am J Epidemiol. 1995;142:885–886.

12. Alavanja MC, Brownson RC, Lubin JH, et al. Residential radon exposure and lung cancer among nonsmoking women. J Natl Cancer Inst. 1994;86:1829–1837.

13. Alavanja MC, Lubin JH, Mahaffey JA, et al. Residential radon exposure and risk of lung cancer in Missouri. Am J Public Health. 1999;89:1042–1048.

14. Field RW, Steck DJ, Smith BJ, et al. Residential radon gas exposure and lung cancer: the Iowa Radon Lung Cancer Study. Am J Epidemiol. 2000;151:1091–1102.

15. Field RW, Steck DJ, Smith BJ, et al. Re: Residential radon gas exposure and lung cancer: the Iowa radon lung cancer study. Am J Epidemiol. 2000;152:895–896.

16. Sandler DP, Weinberg CR, Archer VE, et al. Indoor radon and lung cancer risk: a case–control study in Connecticut and Utah. Radiat Res. 1999;151:103–104.

17. Weinberg CR, Sandler DP. Randomized recruitment in case–control studies. Am J Epidemiol. 1991;134:421–432.

18. Breslow NE, Day NE. Statistical methods in cancer research. Volume I: the analysis of case–control studies. IARC Sci Publ. 1980;32:5–338.

19. Preston DL, Lubin JH, Pierce DA. Epicure User's Guide. Seattle, WA: Hirosoft International Corp; 2002.

20. Weinberg CR, Moledor ES, Umbach DM, et al. Imputation for exposure histories with gaps, under an excess relative risk model. Epidemiology. 1996;7:490–497.

21. Lubin JH, Wang ZY, Kleinerman RA. Residential radon and lung cancer in a high radon area of Gansu province, China. Radiat Res. 2002;158:784–785.

22. Field RW, Steck DJ, Lynch CF, et al. Residential radon-222 exposure and lung cancer: exposure assessment methodology. J Expo Anal Environ Epidemiol. 1996;6:181–195.

23. Warner KE, Mendez D, Courant PN. Toward a more realistic appraisal of the lung cancer risk from radon: the effects of residential mobility. Am J Public Health. 1996;86:1222–1227.

24. Lubin JH, Tomasek L, Edling C, et al. Estimating lung cancer mortality from residential radon using data for low exposures of miners. Radiat Res. 1997;147:126–134.

25. National Research Council (US). Committee on Comparative Dosimetry of Radon in Mines and Homes. Comparative Dosimetry of Radon in Mines and Homes. Washington, DC: National Academy Press; 1991.

26. Miller RC, Randers-Pehrson G, Geard CR, et al. The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei. Proc Natl Acad Sci U S A. 1999;96:19–22.

27. Brenner DJ, Sachs RK. Do low dose-rate bystander effects influence domestic radon risks? Int J Radiat Biol. 2002;78:593–604.

28. Luebeck EG, Heidenreich WF, Hazelton WD, et al. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects. Radiat Res. 1999;152:339–351.

29. Lubin JH, Boice JDJr, Edling C, et al. Radon-exposed underground miners and inverse dose-rate (protraction enhancement) effects. Health Phys. 1995;69:494–500.

30. Brownson RC, Loy TS, Ingram E, et al. Lung cancer in nonsmoking women. Histology and survival patterns. Cancer. 1995;75:29–33.

31. Darby S, Whitley E, Silcocks P, et al. Risk of lung cancer associated with residential radon exposure in south-west England: a case–control study. Br J Cancer. 1998;78:394–408.

32. Lagarde F, Pershagen G, Akerblom G, et al. Residential radon and lung cancer in Sweden: risk analysis accounting for random error in the exposure assessment. Health Phys. 1997;72:269–276.

33. Lubin JH, Wang ZY, Wang LD, et al. Adjusting for temporal and spatial variations in radon concentration in dwellings in Gansu Province, China. Radiat Res. 2005; in press.

34. Lubin JH, Samet JM, Weinberg C. Design issues in epidemiologic studies of indoor exposure to Rn and risk of lung cancer. Health Phys. 1990;59:807–817.

35. Kelsey JL, Thompson WD, Evans AS. Methods in Observational Epidemiology. New York/Oxford: Oxford University Press; 1986. Monographs in Epidemiology and Biostatistics.

36. Pierce DA, Stram DO, Vaeth M. Allowing for random errors in radiation dose estimates for the atomic bomb survivor data. Radiat Res. 1990;123:275–284.

37. Field RW, Smith BJ, Steck DJ, et al. Residential radon exposure and lung cancer: variation in risk estimates using alternative exposure scenarios. J Expo Anal Environ Epidemiol. 2002;12:197–203.

38. Lubin JH, Wang ZY, Boice JDJr, et al. Risk of lung cancer and residential radon in China: pooled results of two studies. Int J Cancer. 2004;109:132–137.

39. Darby SC, Hill D, Auvinen A, et al. Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ. 2004; DOI:10.11361bmj.38308.477650.63.

40. Pershagen G, Liang ZH, Hrubec Z, et al. Residential radon exposure and lung cancer in Swedish women. Health Phys. 1992;63:179–186.

41. Pershagen G, Akerblom G, Axelson O, et al. Residential radon exposure and lung cancer in Sweden. N Engl J Med. 1994;330:159–164.

42. Ruosteenoja E, Makelainen I, Rytomaa T, et al. Radon and lung cancer in Finland. Health Phys. 1996;71:185–189.

43. Auvinen A, Makelainen I, Hakama M, et al. Indoor radon exposure and risk of lung cancer: a nested case–control study in Finland. J Natl Cancer Inst. 1996;88:966–972.

44. Bochicchio F, Forastiere F, Farchi S, et al. Residential radon exposure, diet and lung cancer: a case–control study in a Mediterranean region. Int J Cancer. In press.

45. Kreuzer M, Heinrich J, Wolke G, et al. Residential radon and risk of lung cancer in eastern Germany. Epidemiology. 2003;14:559–568.

46. Kreienbrock L, Kreuzer M, Gerken M, et al. Case–control study on lung cancer and residential radon in western Germany. Am J Epidemiol. 2001;153:42–52.

47. Lagarde F, Axelsson G, Damber L, et al. Residential radon and lung cancer among never-smokers in Sweden. Epidemiology. 2001;12:396–404.

48. Baysson H, Tirmarche M, Tymen G, et al. Case-control study on lung cancer and indoor radon in France. Epidemiology. 2004;15:709–716.

49. Tomasek L, Muller T, Kunz E, et al. Study of lung cancer and residential radon in the Czech Republic. Cent Eur J Public Health. 2001;9:150–153.

50. Blot WJ, Xu ZY, Boice JDJr, et al. Indoor radon and lung cancer in China. J Natl Cancer Inst. 1990;82:1025–1030.

51. Wang Z, Lubin JH, Wang L, et al. Residential radon and lung cancer risk in a high-exposure area of Gansu Province, China. Am J Epidemiol. 2002;155:554–564.

Cited By:

This article has been cited 116 time(s).

Revue Des Maladies Respiratoires
Radon: an occupational and domestic carcinogen
Melloni, B; Bonnaud, F
Revue Des Maladies Respiratoires, 22(4): 571-575.
Journal of Environmental Radioactivity
The practical use of electrets in a public health radon remediation campaign
Denman, AR; Groves-Kirkby, C; Phillips, PS; Crockett, RGM; Woolridge, A; Gillmore, GK
Journal of Environmental Radioactivity, 84(3): 375-391.
Journal of Radiological Protection
The development of the UK radon programme
Kendall, GM; Green, BMR; Miles, JCH; Dixon, DW
Journal of Radiological Protection, 25(4): 475-492.
Revue Des Maladies Respiratoires
Bronchial cancer and the indoor environment
Bonnaud, F; Melloni, B; Vergnenegre, A; Zigani, A; Daix, T
Revue Des Maladies Respiratoires, 24(2): 248-251.

Health Policy
The cost-effectiveness of radon-proof membranes in new homes: A case study from Brixworth, Northamptonshire, UK
Coskeran, T; Denman, A; Phillips, P; Tornberg, R
Health Policy, 81(): 195-206.
Environmental Research
The environmental burden of disease in Canada: Respiratory disease, cardiovascular disease, cancer, and congenital affliction
Boyd, DR; Genuis, SJ
Environmental Research, 106(2): 240-249.
Natural Radiation Environment
Risk of cancer in relation to natural radiation, including radon: Evidence from epidemiological studies
Baysson, H; Tirmarche, M; Laurier, D
Natural Radiation Environment, 1034(): 43-48.

Nuclear Engineering and Technology
Prevention of Cigarette Smoke Induced Lung Cancer By Low Let Ionizing Radiation
Sanders, CL
Nuclear Engineering and Technology, 40(7): 539-550.

Radiation Measurements
Development and intercomparison of a reusable radon-in-water standard
Kitto, ME; Menia, TA; Bari, A; Fielman, EM; Haines, DK
Radiation Measurements, 45(2): 231-233.
Clinical Cancer Research
Lung Cancer in Never Smokers: Clinical Epidemiology and Environmental Risk Factors
Samet, JM; Avila-Tang, E; Boffetta, P; Hannan, LM; Olivo-Marston, S; Thun, MJ; Rudin, CM
Clinical Cancer Research, 15(): 5626-5645.
Environment International
The value of Seasonal Correction Factors in assessing the health risk from domestic radon- A case study in Northamptonshire, UK
Denman, AR; Crockett, RGM; Groves-Kirkby, CJ; Phillips, PS; Gillmore, GK; Woolnidge, AC
Environment International, 33(1): 34-44.
Neuroendocrinology Letters
Simulation of radiation damage to lung cells after exposure to radon decay products
Breier, R; Bohm, R; Kopani, M
Neuroendocrinology Letters, 27(): 86-90.

Journal of the Royal Statistical Society Series C-Applied Statistics
Correlating point-referenced radon and areal uranium data arising from a common spatial process
Smith, BJ; Cowles, MK
Journal of the Royal Statistical Society Series C-Applied Statistics, 56(): 313-326.

Pediatric Clinics of North America
Environments, indoor air quality, and children
Anderson, ME; Bogdan, GM
Pediatric Clinics of North America, 54(2): 295-+.
Water Air and Soil Pollution
An Environmental Risk Assessment of Radon in Lantian Karst Cave of Shaanxi, China
Lu, XW; Li, L; Zhang, XL
Water Air and Soil Pollution, 198(): 307-316.
Statistics in Medicine
Measurement error in the explanatory variable of a binary regression: Regression calibration and integrated conditional likelihood in studies of residential radon and lung cancer
Fearn, T; Hill, DC; Darby, SC
Statistics in Medicine, 27(): 2159-2176.
Atmospheric Environment
Mapping the indoor radon potential in New York at the township level
Kitto, ME; Green, JG
Atmospheric Environment, 42(): 8007-8014.
Applied Radiation and Isotopes
Effects of alpha particles on zebrafish embryos
Yum, EHW; Li, VWT; Choi, VWY; Cheng, SH; Yu, KN
Applied Radiation and Isotopes, 68(): 714-717.
Radiation Measurements
Radon epidemiology and nuclear track detectors: Methods, results and perspectives
Bochicchio, F
Radiation Measurements, 40(): 177-190.
Archives Des Maladies Professionnelles Et De L Environnement
Risk of lung cancer after exposure to radon: Current epidemiological knowledge
Baysson, H; Tirmarche, M
Archives Des Maladies Professionnelles Et De L Environnement, 69(1): 58-66.
Progress in Natural Science
Micronuclei rate and hypoxanthine phosphoribosyl transferase mutation in radon-exposed rats
Cui, FM; Fan, SJ; Hu, MJ; Nie, JH; Li, HM; Tong, J
Progress in Natural Science, 18(): 1305-1308.
Journal of Radiological Protection
Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies
Balashazy, I; Farkas, A; Madas, BG; Hofmann, W
Journal of Radiological Protection, 29(2): 147-162.
Deutsches Arzteblatt International
Radon in Indoor Spaces An Underestimated Risk Factor for Lung Cancer in Environmental Medicine
Schmid, K; Kuwert, T; Drexler, H
Deutsches Arzteblatt International, 107(): 181-U9.
Journal of Toxicology and Environmental Health-Part A-Current Issues
Dosimetric challenges for residential radon epidemiology
Steck, DJ; Field, RW
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 655-664.
Environmental Health Perspectives
Lung cancer attributable to indoor radon exposure in France: Impact of the risk models and uncertainty analysis
Catelinois, O; Rogel, A; Laurier, D; Billon, S; Hemon, D; Verger, P; Tirmarche, M
Environmental Health Perspectives, 114(9): 1361-1366.
Radon: Sources, health risks, and hazard mapping
Appleton, JD
Ambio, 36(1): 85-89.

Environment International
Domestic radon remediation of UK dwellings by sub-slab depressurisation: Evidence for a baseline contribution from constructional materials
Groves-Kirkby, CJ; Denman, AR; Phillips, PS; Tornberg, R; Woolridge, AC; Crockett, RGM
Environment International, 34(3): 428-436.
Journal of Radiological Protection
Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation
Wakeford, R
Journal of Radiological Protection, 29(): A61-A79.
British Journal of Radiology
What are the risks from medical X-rays and other low dose radiation?
Wall, BF; Kendall, GM; Edwards, AA; Boliffler, S; Muirhead, CR; Meara, JR
British Journal of Radiology, 79(): 285-294.
Pediatric Clinics of North America
Trends in childhood cancer incidence: Review of environmental linkages
Buka, I; Koranteng, S; Vargas, ARO
Pediatric Clinics of North America, 54(1): 177-+.
Epidemiology of lung cancer - ACCP evidence-based clinical practice guidelines (2nd edition)
Alberg, AJ; Ford, JG; Samet, JM
Chest, 132(3): 29S-55S.
Public Health Nursing
General public's and physicians' perception of health risk associated with radon exposure in the state of Azad Jammu and Kashmir
Rafique, M; Jabeen, S; Shahzad, MI
Public Health Nursing, 25(4): 327-335.
Cancer Causes & Control
Socioeconomic differences in lung cancer incidence: a systematic review and meta-analysis
Sidorchuk, A; Agardh, EE; Aremu, O; Hallqvist, J; Allebeck, P; Moradi, T
Cancer Causes & Control, 20(4): 459-471.
Environment International
Radon mitigation in domestic properties and its health implications - a comparison between during-construction and post-construction radon reduction
Groves-Kirkby, CJ; Denman, AR; Phillips, PS; Crockett, RGM; Woolridge, AC; Tornberg, R
Environment International, 32(4): 435-443.
International Journal of Cancer
Radon, secondhand smoke, glutathione-S-transferase M1 and lung cancer among women
Bonner, MR; Bennett, WP; Xiong, WY; Lan, Q; Brownson, RC; Harris, CC; Field, RW; Lubin, JH; Alavanja, MCR
International Journal of Cancer, 119(6): 1462-1467.
Journal of Environmental Radioactivity
A cost-effectiveness analysis of radon protection methods in domestic properties: a comparative case study in Brixworth, Northamptonshire, UK
Coskeran, T; Denman, A; Phillips, P; Tornberg, R
Journal of Environmental Radioactivity, 91(): 73-89.
Medicina Clinica
Randon and lung cancer. Implications for health workers, citizens and public administrations
Ruano-Ravina, A; Barros-Dios, JM
Medicina Clinica, 128(): 545-549.

Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis
Sanders, CL; Scott, BR
Dose-Response, 6(1): 53-79.
Geoscience Canada
International Year of Planet Earth 2. Earth and Health - Building a Safer Canadian Environment
Rasmussen, PE; Gardner, HD
Geoscience Canada, 35(2): 61-72.

Radiation and Environmental Biophysics
Are cancer risks associated with exposures to ionising radiation from internal emitters greater than those in the Japanese A-bomb survivors?
Little, MP; Hall, P; Charles, MW
Radiation and Environmental Biophysics, 46(4): 299-310.
Applied Radiation and Isotopes
The radon issue: Considerations on regulatory approaches and exposure evaluations on the basis of recent epidemiological results
Bochicchio, F
Applied Radiation and Isotopes, 66(): 1561-1566.
Radiation Protection Dosimetry
Indoor radon and childhood leukaemia
Raaschou-Nielsen, O
Radiation Protection Dosimetry, 132(2): 175-181.
Radiation Measurements
Radon exhalation studies in an Indian uranium tailings pile
Sahoo, BK; Mayya, YS; Sapra, BK; Gaware, JJ; Banerjee, KS; Kushwaha, HS
Radiation Measurements, 45(2): 237-241.
Journal of Toxicology and Environmental Health-Part A-Current Issues
World Health Organization's International Radon Project
Zielinski, JM; Carr, Z; Krewski, D; Repacholi, M
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 759-769.
Journal of Radiological Protection
Radon in Irish schools: the results of a national survey
Synnott, H; Hanley, O; Fenton, D; Colgan, PA
Journal of Radiological Protection, 26(1): 85-96.
Journal of Environmental Management
Lorenz Curve and Gini Coefficient: Novel tools for analysing seasonal variation of environmental radon gas
Groves-Kirkby, CJ; Denman, AR; Phillips, PS
Journal of Environmental Management, 90(8): 2480-2487.
Radiation Research
Lung cancer in French and Czech uranium miners: Radon-associated risk at low exposure rates and modifying effects of time since exposure and age at exposure
Tomasek, L; Rogel, A; Tirmarche, M; Mitton, N; Laurier, D
Radiation Research, 169(2): 125-137.

Natural Radiation Environment
Key strategic decisions in designing and implementing a measurement program for radon in homes
Colgan, PA
Natural Radiation Environment, 1034(): 131-136.

Scandinavian Journal of Work Environment & Health
Residential radon and lung cancer - detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14208 persons without lung cancer from 13 epidemiologic studies in Europe
Darby, S; Hill, D; Deo, H; Auvinen, A; Barros-Dios, JM; Baysson, H; Bochicchio, F; Falk, R; Farchi, S; Figueiras, A; Hakama, M; Heid, I; Hunter, N; Kreienbrock, L; Kreuzer, M; Lagarde, F; Makelainen, I; Muirhead, C; Oberaigner, W; Pershagen, G; Ruosteenoja, E; Rosario, AS; Tirmarche, M; Tomasek, L; Whitley, E; Wichmann, HE; Doll, R
Scandinavian Journal of Work Environment & Health, 32(): 1-+.

Journal of Toxicology and Environmental Health-Part A-Current Issues
Indoor radon and lung cancer risk in Connecticut and Utah
Sandler, DP; Weinberg, CR; Shore, DL; Archer, VE; Stone, MB; Lyon, Jl; Rothney-Kozlak, L; Shepherd, M; Stolwijk, JAJ
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 633-654.
Radiation Protection Dosimetry
Radon and thoron parallel measurements in Hungary
Kavasi, N; Nemeth, C; Kovacs, T; Tokonami, S; Jobbagy, V; Varhegyi, A; Gorjanacz, Z; Vigh, T; Somlai, J
Radiation Protection Dosimetry, 123(2): 250-253.
Journal of Radiological Protection
Seasonal variation in indoor radon concentrations in dwellings in six districts of the Punjab province, Pakistan
Faheem, M; Matiullah, NM
Journal of Radiological Protection, 27(4): 493-500.
Cadernos De Saude Publica
Screening methodology application to evaluate cancer mortality in selected cities in the State of Minas Gerais, Brazil
Otero, UB; Antoniazzi, BN; Veiga, LHS; Turci, SR; E Silva Mendonca, GA
Cadernos De Saude Publica, 23(): S537-S548.

Canadian Medical Association Journal
Quality of indoor residential air and health
Dales, R; Liu, L; Wheeler, AJ; Gilbert, NL
Canadian Medical Association Journal, 179(2): 147-152.
Radiation Measurements
Influence of the presence of humidity, ambient aerosols and thoron on the detection responses of electret radon monitors
Sorimachi, A; Takahashi, H; Tokonami, S
Radiation Measurements, 44(1): 111-115.
Radiation and Environmental Biophysics
Radon diffusion coefficients of vapour barrier membranes used in Canadian building construction
Chen, J; Ly, J; Schroth, E; Hnatiuk, S; Frenette, E; Blain, MF
Radiation and Environmental Biophysics, 48(2): 153-158.
Risk Analysis
Residential radon in Canada: An uncertainty analysis of population and individual lung cancer risk
Brand, KP; Zielinski, JM; Krewski, D
Risk Analysis, 25(2): 253-269.

Journal of Alternative and Complementary Medicine
Radioactive pain relief: Health care strategies and risk assessment among elderly persons with arthritis at radon health mines
Erickson, BE
Journal of Alternative and Complementary Medicine, 13(3): 375-379.
Natural Radiation Environment
The Japanese radon and thoron reference chambers
Tokonami, S; Ishikawa, T; Sorimachi, A; Takahashi, H; Miyahara, N
Natural Radiation Environment, 1034(): 202-205.

Journal of Toxicology and Environmental Health-Part A-Current Issues
An overview of the North American residential radon and lung cancer case-control studies
Field, RW; Krewski, D; Lubin, JH; Zielinski, JM; Alavanja, M; Catalan, VS; Klotz, JB; Letourneau, EG; Lynch, CF; Lyon, JL; Sandler, DP; Schoenberg, JB; Steck, DJ; Stolwijk, JA; Weinberg, C; Wilcox, HB
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 599-631.
Journal of Toxicology and Environmental Health-Part A-Current Issues
A combined analysis of North American case-control studies of residential radon and lung cancer
Krewski, D; Lubin, JH; Zielinski, JM; Alavanja, M; Catalan, VS; Field, RW; Klotz, JB; Letourneau, EG; Lynch, CF; Lyon, JL; Sandler, DP; Schoenberg, JB; Steck, DJ; Stolwijk, JA; Weinberg, C; Wilcox, HB
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 533-597.
Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science
Thoron in the environment and its related issues
Tokonami, S
Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science, 83(6): 777-785.

Development Southern Africa
Affordable and middle-class housing on Johannesburg's mining sites: a benefit-cost analysis
Simons, RA; Karam, AH
Development Southern Africa, 25(1): 3-20.
Science of the Total Environment
Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airbome gamma ray spectrometry and geological mapping
Smethurst, MA; Strand, T; Sundal, AV; Rudjord, AL
Science of the Total Environment, 407(1): 379-393.
Journal of Radiation Research
A Simulation Study of Radon and Thoron Discrimination Problem in Case-Control Studies
Doi, K; Tokonami, S; Yonehara, H; Yoshinaga, S
Journal of Radiation Research, 50(6): 495-506.
International Journal of Radiation Biology
Health effects of radon: A review of the literature
Al-Zoughool, M; Krewski, D
International Journal of Radiation Biology, 85(1): 57-69.
Journal of Clinical Oncology
Lung cancer in never smokers: A review
Subramanian, J; Govindan, R
Journal of Clinical Oncology, 25(5): 561-570.
Effect of housing factors and surficial uranium on the spatial prediction of residential radon in Iowa
Smith, BJ; Field, RW
Environmetrics, 18(5): 481-497.
American Journal of Epidemiology
Cigarette smoking and cancer risk: Modeling total exposure and intensity
Lubin, JH; Alavanja, MCR; Caporaso, N; Brown, LM; Brownson, RC; Field, RW; Garcia-Closas, M; Hartge, P; Hauptmann, M; Hayes, RB; Kleinerman, R; Kogevinas, M; Krewski, D; Langholz, B; Letourneau, EG; Lynch, CF; Malats, N; Sandler, DP; Schaffrath-Rosario, A; Schoenberg, JB; Silverman, DT; Wang, ZY; Wichmann, HE; Wilcox, HB; Zielinski, JM
American Journal of Epidemiology, 166(4): 479-489.
Radiation Measurements
Results of the first 5 years of a study on year-to-year variations of radon concentration in Italian dwellings
Bochicchio, F; Ampollini, M; Antignani, S; Bruni, B; Quarto, M; Venoso, G
Radiation Measurements, 44(): 1064-1068.
Role of exposure to radon and silicosis on the cell type of lung carcinoma in German uranium miners
Taeger, D; Fritsch, A; Wiethege, T; Johnen, G; Eisenmenger, A; Wesch, H; Ko, Y; Stier, S; Muller, KM; Bruning, T; Pesch, B
Cancer, 106(4): 881-889.
Journal of Environmental Radioactivity
Time-integrating radon gas measurements in domestic premises: comparison of short-, medium- and long-term exposures
Groves-Kirkby, CJ; Denman, AR; Crockett, RGM; Phillips, PS; Woolridge, AC; Gillmore, GK
Journal of Environmental Radioactivity, 86(1): 92-109.
Radiation Protection Dosimetry
Case-control study of radon and lung cancer in New Jersey
Wilcox, HB; Al-Zoughool, M; Garner, MJ; Jiang, H; Klotz, JB; Krewski, D; Nicholson, WJ; Schoenberg, JB; Villeneuve, PJ; Zielinski, JM
Radiation Protection Dosimetry, 128(2): 169-179.
Radiation Protection Dosimetry
Radon: A special case in radiation protection
Vanmarcke, H
Radiation Protection Dosimetry, 130(1): 76-80.
Risk Analysis
Assessment of the effectiveness of radon screening programs in reducing lung cancer mortality
Gagnon, F; Courchesne, M; Levesque, B; Ayotte, P; Leclerc, JM; Belles-Isles, JC; Prevost, C; Dessau, JC
Risk Analysis, 28(5): 1221-1229.
Environment International
A critical evaluation of the cost-effectiveness of radon protection methods in new homes in a radon Affected Area of England
Coskeran, T; Denman, A; Phillips, P; Tornberg, R
Environment International, 35(6): 943-951.
Radiation Measurements
Radon concentration variations between and within buildings of a research institute
Antignani, S; Bochicchio, F; Ampollini, M; Venoso, G; Bruni, B; Innamorati, S; Malaguti, L; Stefano, A
Radiation Measurements, 44(): 1040-1044.
Strahlentherapie Und Onkologie
Radon in homes and risk of lung cancer
Jung, H
Strahlentherapie Und Onkologie, 181(): 683-684.

Journal of Environmental Radioactivity
A detailed evaluation of the individual health benefits arising in a domestic property following radon remediation - a case-study in Northamptonshire, UK
Denman, AR; Briggs, DJ; Allison, CC; Groves-Kirkby, CJ; Phillips, PS; Crockett, RGM
Journal of Environmental Radioactivity, 99(7): 1175-1184.
Environment International
Radon remediation of a two-storey UK dwelling by active sub-slab depressurisation: Effects and health implications of radon concentration distributions
Allison, CC; Denman, AR; Groves-Kirkby, CJ; Phillips, PS; Tornberg, R
Environment International, 34(7): 1006-1015.
International Journal of Radiation Biology
Ionising radiation and cancer risks: What have we learned from epidemiology?
Gilbert, ES
International Journal of Radiation Biology, 85(6): 467-482.
Journal of Radiological Protection
Human exposure to high natural background radiation: what can it teach us about radiation risks?
Hendry, JH; Simon, SL; Wojcik, A; Sohrabi, M; Burkart, W; Cardis, E; Laurier, D; Tirmarche, M; Hayata, I
Journal of Radiological Protection, 29(): A29-A42.
Radiation and Environmental Biophysics
Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946-2003
Kreuzer, M; Grosche, B; Schnelzer, M; Tschense, A; Dufey, F; Walsh, L
Radiation and Environmental Biophysics, 49(2): 177-185.
Journal of Toxicology and Environmental Health-Part A-Current Issues
Assessment and management of residential radon health risks: A report from the Health Canada Radon Workshop
Tracy, BL; Krewski, D; Chen, J; Zielinski, JM; Brand, KP; Meyerhof, D
Journal of Toxicology and Environmental Health-Part A-Current Issues, 69(): 735-758.
Iranian Journal of Radiation Research
Assessment of lung cancer risk due to indoor radon exposure in inhabitants of the state of Azad Kashmir; Pakistan
Rafique, M; Manzoor, N; Rahman, S; Rahman, SU; Rajput, MU; Matiullah
Iranian Journal of Radiation Research, 10(1): 19-29.

Journal of Applied Statistics
Identifying radon-prone building typologies by marginal modelling
Borgoni, R; Tritto, V; de Bartolo, D
Journal of Applied Statistics, 40(9): 2069-2086.
Radiation Protection Dosimetry
Effects of Air Exchange Property of Passive-Type Radon-Thoron Discriminative Detectors on Performance of Radon and Thoron Measurements
Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S
Radiation Protection Dosimetry, 152(): 140-145.
Radiation Protection Dosimetry
Short- and long-term variability of radon progeny concentration in dwellings in the Czech Republic
Slezakova, M; Rovenska, KN; Tomasek, L; Holecek, J
Radiation Protection Dosimetry, 153(3): 334-341.
Indoor and Built Environment
Radon Exposure Assessment for Sewerage System's Workers in Naples, South Italy
Pugliese, M; Quarto, M; De Cicco, F; De Sterlich, C; Roca, V
Indoor and Built Environment, 22(3): 575-579.
European Journal of Pain
Preventive and curative effects of radon inhalation on chronic constriction injury-induced neuropathic pain in mice
Yamato, K; Kataoka, T; Nishiyama, Y; Taguchi, T; Yamaoka, K
European Journal of Pain, 17(4): 480-492.
Journal of Environmental Radioactivity
Natural radioactivity and radiation index of the major plutonic bodies in Greece
Papadopoulos, A; Christofides, G; Koroneos, A; Papadopoulou, L; Papastefanou, C; Stoulos, S
Journal of Environmental Radioactivity, 124(): 227-238.
Radiation Protection Dosimetry
Human exposure to indoor radon: a survey in the region of Guarda, Portugal
Louro, A; Peralta, L; Soares, S; Pereira, A; Cunha, G; Belchior, A; Ferreira, L; Gil, OM; Louro, H; Pinto, P; Rodrigues, AS; Silva, MJ; Teles, P
Radiation Protection Dosimetry, 154(2): 237-244.
Environmental Research Letters
Exploring the consequences of climate change for indoor air quality
Nazaroff, WW
Environmental Research Letters, 8(1): -.
ARTN 015022
Journal of Radiological Protection
Establishing a regional reference indoor radon level on the basis of radon survey data
Yarmoshenko, I; Onishchenko, A; Zhukovsky, M
Journal of Radiological Protection, 33(2): 329-338.
Radiation Measurements
Quantitative evaluation of the lung cancer deaths attributable to residential radon: A simple method and results for all the 21 Italian Regions
Bochicchio, F; Antignani, S; Venoso, G; Forastiere, F
Radiation Measurements, 50(): 121-126.
Radiation Measurements
National survey of indoor thoron concentration in FYR of Macedonia (continental Europe - Balkan region)
Stojanovska, Z; Bossew, P; Tokonami, S; Zunic, ZS; Bochicchio, F; Boev, B; Ristova, M; Januseski, J
Radiation Measurements, 49(): 57-66.
Environmental Earth Sciences
Soil radon in winter months under snowpack in Hokkaido, Japan
Fujiyoshi, R; Okabayashi, M; Sakuta, Y; Okamoto, K; Sumiyoshi, T; Kobal, I; Vaupoti, J
Environmental Earth Sciences, 70(3): 1159-1167.
Romanian Journal of Physics
Health Effects Attributed to Radon From the Perspective of the Linear No-Threshold Hypothesis
Truta, LA; Hofmann, W; Cosma, C; Radulescu, D
Romanian Journal of Physics, 58(): S280-S290.

Isotopes in Environmental and Health Studies
Preliminary risk assessment of radon in groundwater: a case study from Eskisehir, Turkey
Yuce, G; Gasparon, M
Isotopes in Environmental and Health Studies, 49(2): 163-179.
International Journal of Molecular Sciences
The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review
Robertson, A; Allen, J; Laney, R; Curnow, A
International Journal of Molecular Sciences, 14(7): 14024-14063.
Radiation Protection Dosimetry
Indoor radon concentration measurements in some dwellings of the Penisola Sorrentina, South Italy
Quarto, M; Pugliese, M; Loffredo, F; Roca, V
Radiation Protection Dosimetry, 156(2): 207-212.
Indian Journal of Physics
An improved silicon PIN diode based portable radon monitor
Ashokkumar, P; Sahoo, BK; Topkar, A; Raman, A; Babu, DAR; Sharma, DN; Mayya, YS
Indian Journal of Physics, 87(5): 471-477.
Clinics in Chest Medicine
Occupational and Environmental Causes of Lung Cancer
Field, RW; Withers, BL
Clinics in Chest Medicine, 33(4): 681-+.
Indoor Air
Variation in residential radon levels in new Danish homes
Brauner, EV; Rasmussen, TV; Gunnarsen, L
Indoor Air, 23(4): 311-317.
Residential Radon and Lung Cancer
Ruano-Ravina, A; Rodríguez, MC; Cerdeira-Caramés, S; Barros-Dios, JM
Epidemiology, 20(1): 155-156.
PDF (165) | CrossRef
Domestic Radon and Childhood Cancer in Denmark
Raaschou-Nielsen, O; Andersen, CE; Andersen, HP; Gravesen, P; Lind, M; Schüz, J; Ulbak, K
Epidemiology, 19(4): 536-543.
PDF (513) | CrossRef
Health Physics
Annual Average Indoor Radon Variations Over Two Decades
Steck, DJ
Health Physics, 96(1): 37-47.
PDF (623) | CrossRef
Health Physics
Accounting for Smoking in the Radon-Related Lung Cancer Risk Among German Uranium Miners: Results of A Nested Case-Control Study
Schnelzer, M; Hammer, GP; Kreuzer, M; Tschense, A; Grosche, B
Health Physics, 98(1): 20-28.
PDF (206) | CrossRef
Health Physics
Radon and Lung Cancer Risk: An Extension of the Mortality Follow-Up of the Newfoundland Fluorspar Cohort
Villeneuve, PJ; Morrison, HI; Lane, R
Health Physics, 92(2): 157-169.
PDF (235) | CrossRef
Health Physics
Case-Control Study of Lung Cancer Risk From Residential Radon Exposure in Worcester County, Massachusetts
Thompson, RE; Nelson, DF; Popkin, JH; Popkin, Z
Health Physics, 94(3): 228-241.
PDF (299) | CrossRef
Health Physics
Blind Testing of Commercially Available Short-Term Radon Detectors
Sun, K; Budd, G; McLemore, S; Field, RW
Health Physics, 94(6): 548-557.
PDF (795) | CrossRef
Health Physics
Population Attributable Fraction for Lung Cancer Due to Residential Radon in Switzerland and Germany
Menzler, S; Piller, G; Gruson, M; Rosario, AS; Wichmann, H-; Kreienbrock, L
Health Physics, 95(2): 179-189.
PDF (293) | CrossRef
Health Physics
Field Investigation of Surface-Deposited Radon Progeny As A Possible Predictor of the Airborne Radon Progeny Dose Rate
Sun, K; Steck, DJ; Field, RW
Health Physics, 97(2): 132-144.
PDF (778) | CrossRef
Health Physics
Variation in Yearly Residential Radon Concentrations in the Upper Midwest
Zhang, Z; Smith, B; Steck, DJ; Guo, Q; Field, RW
Health Physics, 93(4): 288-297.
PDF (261) | CrossRef
Health Physics
The Risk of Cancer From Natural Background Ionizing Radiation
Wakeford, R; Kendall, GM; Little, MP
Health Physics, 97(6): 637-638.
PDF (56) | CrossRef
Southern Medical Journal
Factors Contributing to Elevated Indoor Radon in the Paso Del Norte Region of the Texas-Mexico Border: Information for Physicians
Cech, I; Burau, KD; Al-Hashimi, R
Southern Medical Journal, 102(7): 701-706.
PDF (1473) | CrossRef
Back to Top | Article Outline

Supplemental Digital Content

Back to Top | Article Outline

© 2005 Lippincott Williams & Wilkins, Inc.

Twitter  Facebook 


Article Tools



Article Level Metrics