Home Current Issue Previous Issues Published Ahead-of-Print Collections Podcasts Videos For Authors Journal Info
Skip Navigation LinksHome > January 2014 - Volume 25 - Issue 1 > Estimating the Per-Exposure Effect of Infectious Disease Int...
Epidemiology:
doi: 10.1097/EDE.0000000000000003
Infectious Disease

Estimating the Per-Exposure Effect of Infectious Disease Interventions

O’Hagan, Justin J.a,b; Lipsitch, Marca–c; Hernán, Miguel A.a

Supplemental Author Material
Collapse Box

Abstract

The average effect of an infectious disease intervention (eg, a vaccine) varies across populations with different degrees of exposure to the pathogen. As a result, many investigators favor a per-exposure effect measure that is considered independent of the population level of exposure and that can be used in simulations to estimate the total disease burden averted by an intervention across different populations. However, while per-exposure effects are frequently estimated, the quantity of interest is often poorly defined, and assumptions in its calculation are typically left implicit. In this article, we build upon work by Halloran and Struchiner (Epidemiology. 1995;6:142–151) to develop a formal definition of the per-exposure effect and discuss conditions necessary for its unbiased estimation. With greater care paid to the parameterization of transmission models, their results can be better understood and can thereby be of greater value to decision-makers.

Copyright © 2013 by Lippincott Williams & Wilkins

Twitter  Facebook

Login

Article Tools

Share