Short-Term Effects of Ambient Particles on Cardiovascular and Respiratory Mortality

Analitis, Antonis*; Katsouyanni, Klea*; Dimakopoulou, Konstantina*; Samoli, Evangelia*; Nikoloulopoulos, Aristidis K.*; Petasakis, Yannis*; Touloumi, Giota*; Schwartz, Joel†; Anderson, Hugh Ross‡; Cambra, Koldo§; Forastiere, Francesco∥; Zmirou, Denis¶; Vonk, Judith M.**; Clancy, Luke††; Kriz, Bohumir‡‡; Bobvos, Janos§§; Pekkanen, Juha∥∥

doi: 10.1097/01.ede.0000199439.57655.6b
Brief Report

Background: Particulate air pollution is associated with increased mortality. There is a need for European results from multicountry databases concerning cause-specific mortality to obtain more accurate effect estimates.

Methods: We report the estimated effects of ambient particle concentrations (black smoke and particulate matter less than 10 μm [PM10]) on cardiovascular and respiratory mortality, from 29 European cities, within the Air Pollution and Health: a European Approach (APHEA2) project. We applied a 2-stage hierarchical modeling approach assessing city-specific effects first and then overall effects. City characteristics were considered as potential effect modifiers.

Results: An increase in PM10 by 10 μg/m3 (lag 0 + 1) was associated with increases of 0.76% (95% confidence interval = 0.47 to 1.05%) in cardiovascular deaths and 0.58% (0.21 to 0.95%) in respiratory deaths. The same increase in black smoke was associated with increases of 0.62% (0.35 to 0.90%) and 0.84% (0.11 to 1.57%), respectively.

Conclusions: These effect estimates are appropriate for health impact assessment and standard-setting procedures.

From the *Department of Hygiene and Epidemiology, University of Athens Medical School, Athens, Greece; †Harvard School of Public Health, Boston, MA; the ‡Division of Community Health Sciences, St. George's University of London, London, U.K.; the §Department of Health, Basque Government, Vitoria Gasteiz, Spain; the ∥Department of Epidemiology, Roma E Health Authority, Rome, Italy; ¶INSERM Unit ERI n°11 (Assessment and Prevention of Occupational and Environmental Risks), Medical School, Nancy University, Nancy, France; the **Department of Epidemiology and Bioinformatics, University Medical Center Groningen, The Netherlands; ††CResT Directorate, St. James Hospital, Dublin, Ireland; the ‡‡Department of Epidemiology CPL, Charles University, 3rd Medical Faculty, Praha, NIPH, Czech Republic; §§Budapest Institute of the National Public Health and Medical Officer Service, Hungary; and the ∥∥Unit of Environmental Epidemiology, National Public Health Institute, Kuopio, Finland.

Submitted 4 March 2005; accepted 12 October 2005.

Supported by the European Commission Environment and Climate 1994–1998 Program and Key Action 4: Environment and Health, FP5 (contract nos. ENV4-CT97-0534 and QLK4-CT-2001-30055).

Supplemental material for this article is available with the online version of the journal at; click on “Article Plus.”

Correspondence: Klea Katsouyanni, Department of Hygiene and Epidemiology, University of Athens Medical School, 75, Mikras Asias Street, 115 27 Athens, Greece. E-mail:

© 2006 Lippincott Williams & Wilkins, Inc.