Institutional members access full text with Ovid®

Toxic and Endocrine Myopathies

Katzberg, Hans D. MD; Kassardjian, Charles D. MD

doi: 10.1212/CON.0000000000000407
Review Articles

ABSTRACT: Purpose of Review: This article discusses the clinical features, pathophysiology, and management of toxic and endocrine myopathies.

Recent Findings: Early detection and expeditious correction of metabolic disturbances in endocrinopathies such as Cushing syndrome, thyroid and parathyroid diseases, and acromegaly can minimize and prevent neurologic complications including myopathy. Recently proposed mechanisms of injury in patients with critical illness myopathy include inhibition of protein synthesis, mitochondrial dysfunction, disruption of the ubiquitin-proteasome system, oxidative stress, and disruption of intramuscular calcium homeostasis, which can cause a myosin-loss myopathy. Mechanisms underlying toxic myopathies include myosin loss; damage to cellular structures, including myofibrils and organelles such as lysosomes and mitochondria; inflammation; and necrosis. Presentations range anywhere from acute, painful, and necrotic myopathies, as can occur in statin myopathy, to more insidious presentations such as steroid myopathy.

Summary: Endocrinopathies known to cause myopathy include thyroid and parathyroid diseases, disorders of the adrenal axis such as Cushing syndrome, and acromegaly. Patients in the intensive care unit are at risk for developing critical illness myopathy, also known as myosin-loss myopathy, which should be considered if intensive care unit acquired weakness develops. The most common toxic agents associated with myopathy include statins and other lipid-lowering medications, corticosteroids, colchicine, amiodarone, hydroxychloroquine, and chloroquine.

Address correspondence to Dr Hans D. Katzberg, University Health Network, University of Toronto, 200 Elizabeth St, 5EC-306, Toronto, ON M5S 3L4, Canada, hans.katzberg@utoronto.ca.

Relationship Disclosure: Dr Katzberg has received personal compensation for serving as a consultant for Flex Pharma and Octapharma AG, for serving as a speaker and a consultant for Sanofi Genzyme, and for serving on the advisory board of and as a consultant and a speaker for CSL Behring and Grifols. Dr Katzberg has received research grants from CSL Behring, Grifols, and Muscular Dystrophy Canada. Dr Kassardjian has received honoraria for grand rounds lectures for Sanofi Genzyme.

Unlabeled Use of Products/Investigational Use Disclosure: Drs Katzberg and Kassardjian report no disclosures.

© 2016 American Academy of Neurology