Skip Navigation LinksHome > June 2009 - Volume 20 - Issue 3 > FoxO1 and hepatic lipid metabolism
Current Opinion in Lipidology:
doi: 10.1097/MOL.0b013e32832b3f4c
Lipid metabolism: Edited by Jeffrey S. Cohn

FoxO1 and hepatic lipid metabolism

Sparks, Janet Da; Dong, Henry Hb

Collapse Box

Abstract

Purpose of review: This review summarizes recent research implicating Forkhead box (Fox)O1, a key transcription factor in glucose metabolism, in the regulation of hepatic lipid metabolism. Insulin dysregulation leading to hypertriglyceridemia is associated with increased hepatic VLDL secretion. FoxO1 is integrated in action with other regulatory factors in VLDL metabolism. The role of FoxO1 is defined in context of recent controversies.

Recent findings: FoxO1 regulates transcription of microsomal triglyceride transfer protein and apolipoprotein (apo)CIII involved in hepatic assembly and postsecretory catabolism of VLDL. Insulin activation of Akt leads to the phosphorylation of FoxO1 with nuclear exclusion and loss of transcriptional activity. Reduced insulin action increases FoxO1 activity and induces microsomal triglyceride transfer protein favoring VLDL assembly and induces apoCIII reducing peripheral triglyceride catabolism. This new mechanistic link between insulin resistance and VLDL overproduction and hypertriglyceridemia compounds effects of other known VLDL regulatory factors.

Summary: This review highlights recent advances in research of insulin regulation of hepatic VLDL metabolism. Formation of VLDL requires lipid, apoB structural protein, and microsomal triglyceride transfer protein. FoxO1 is a major factor in hepatic microsomal triglyceride transfer protein regulation. A unifying hypothesis is presented linking regulation of the three necessary hepatic components for VLDL assembly with insulin action and insulin resistance.

© 2009 Lippincott Williams & Wilkins, Inc.

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.