Skip Navigation LinksHome > March 2012 - Volume 15 - Issue 2 > Immunomodulation of microglia by docosahexaenoic acid and ei...
Current Opinion in Clinical Nutrition & Metabolic Care:
doi: 10.1097/MCO.0b013e32835017cc
LIPID METABOLISM AND THERAPY: Edited by Philip C. Calder and Richard J. Deckelbaum

Immunomodulation of microglia by docosahexaenoic acid and eicosapentaenoic acid

Hjorth, Erika; Freund-Levi, Yvonneb

Collapse Box

Abstract

Purpose of review: The omega-3 fatty acids (ω-3 FAs) docosahexaenoic acid and eicosapentaenoic acid are dietary components which have been ascribed many different health benefits. Inflammation is present in, and contributes to, pathological conditions in the central nervous system (CNS). Microglia are the primary cells with immune function in the CNS, and inflammation mediated by activated microglia is present in pathological conditions. In this review, we present and discuss findings on the modulation of microglial activities by ω-3 FAs in vivo as well as in vitro, and propose mechanisms for their effects.

Recent findings: The majority of studies show that ω-3 FAs have anti-inflammatory effects on microglia. However, phagocytosis is an activity associated with inflammation and is increased by ω-3 FAs. This can be understood in the light of recent research on the resolution of inflammation. Resolution is induced by proresolving factors, which are metabolites of ω-3 FAs. Proresolving factors are anti-inflammatory and have been shown to increase phagocytosis. Other mechanisms of the anti-inflammatory actions of ω-3 FAs involve the peroxisome proliferator-activated receptor-γ, ω-3 FA incorporation into the cell membrane, and inhibition of ion currents.

Summary: Immunomodulation by ω-3 FAs is mediated by several pathways that are interconnected and is a potential therapy for disorders in the CNS.

© 2012 Lippincott Williams & Wilkins, Inc.

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.