Skip Navigation LinksHome > September 2011 - Volume 21 - Issue 5 > Does Cervical Muscle Strength in Youth Ice Hockey Players Af...
Clinical Journal of Sport Medicine:
doi: 10.1097/JSM.0B013E31822C8A5C
Original Research

Does Cervical Muscle Strength in Youth Ice Hockey Players Affect Head Impact Biomechanics?

Mihalik, Jason P PhD, CAT(C), ATC*†; Guskiewicz, Kevin M PhD, ATC*†; Marshall, Stephen W PhD‡; Greenwald, Richard M PhD§¶; Blackburn, J Troy PhD, ATC†‖; Cantu, Robert C MD**††

Collapse Box

Abstract

Objective: To evaluate the effect of cervical muscle strength on head impact biomechanics.

Design: Prospective cohort.

Setting: Field setting.

Participants: Thirty-seven volunteer ice hockey players (age = 15.0 ± 1.0 years, height = 173.5 ± 6.2 cm, mass = 66.6 ± 9.0 kg, playing experience = 2.9 ± 3.7 years).

Interventions: Participants were equipped with accelerometer-instrumented helmets to collect head impact biomechanics (linear and rotational acceleration) throughout an entire playing season. Before the season, isometric cervical muscle strength was measured for the anterior neck flexors, anterolateral neck flexors, cervical rotators, posterolateral neck extensors, and upper trapezius. Data were analyzed using random intercept general mixed linear models, with each individual player as a repeating factor/cluster.

Main Outcome Measures: Dependent variables included linear and rotational head accelerations. Cervical strength data were categorized into tertiles, creating groups with high, moderate, and low strength. Strength measures were averaged and normalized to body mass.

Results: Significant differences in cervical muscle strength existed across our strength groups (P < 0.05). No differences were observed in linear or rotational acceleration across strength groups for the anterior neck flexors (PLin = 0.399; PRot = 0.060), anterolateral neck flexors (PLin = 0.987; PRot = 0.579), cervical rotators (PLin = 0.136; PRot = 0.238), posterolateral neck extensors (PLin = 0.883; PRot = 0.101), or upper trapezius (PLin = 0.892; PRot = 0.689).

Conclusions: Our hypothesis that players with greater static neck strength would experience lower resultant head accelerations was not supported. This contradicts the notion that cervical muscle strength mitigates head impact acceleration. Because we evaluated cervical strength isometrically, future studies should consider dynamic (ie, isokinetic) methods in the context of head impact biomechanics.

© 2011 Lippincott Williams & Wilkins, Inc.

You Tube The CJSM Blog Linked In Facebook Twitter

Login

Article Tools

Share

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.