Share this article on:

Utilization and Outcomes of Temporary Mechanical Circulatory Support for Graft Dysfunction After Heart Transplantation.

Phan, Kevin; Luc, Jessica G. Y.; Xu, Joshua; Maltais, Simon; Stulak, John M.; Yan, Tristan D.; Tchantchaleishvili, Vakhtang
doi: 10.1097/MAT.0000000000000599
Review Article: PDF Only

Graft dysfunction is the main cause of early mortality after heart transplantation. In cases of severe graft dysfunction, temporary mechanical circulatory support (TMCS) may be necessary. The aim of this systematic review was to examine the utilization and outcomes of TMCS in patients with graft dysfunction after heart transplantation. Electronic search was performed to identify all studies in the English literature assessing the use of TMCS for graft dysfunction. All identified articles were systematically assessed for inclusion and exclusion criteria. Of the 5,462 studies identified, 41 studies were included. Among the 11,555 patients undergoing heart transplantation, 695 (6.0%) required TMCS with patients most often supported using venoarterial extracorporeal membrane oxygenation (79.4%) followed by right ventricular assist devices (11.1%), biventricular assist devices (BiVADs) (7.5%), and left ventricular assist devices (LVADs) (2.0%). Patients supported by LVADs were more likely to be supported longer (p = 0.003), have a higher death by cardiac event (p = 0.013) and retransplantation rate (p = 0.015). In contrast, patients supported with BiVAD and LVAD were more likely to be weaned off support (p = 0.020). Overall, no significant difference was found in pooled 30 day survival (p = 0.31), survival to discharge (p = 0.19), and overall survival (p = 0.51) between the subgroups. Temporary mechanical circulatory support is an effective modality to support patients with graft dysfunction after heart transplantation. Further studies are needed to establish the optimal threshold and strategy for TMCS and to augment cardiac recovery and long-term survival.

Copyright (C) 2017 by the American Society for Artificial Internal Organs