Skip Navigation LinksHome > January 2013 - Volume 24 - Issue 1 > Antitumor effects and preliminary systemic toxicity of ANISp...
Anti-Cancer Drugs:
doi: 10.1097/CAD.0b013e328359affd
Preclinical Reports

Antitumor effects and preliminary systemic toxicity of ANISpm in vivo and in vitro

Li, Minga; Li, Qianb; Zhang, Ya-hongb; Tian, Zhi-yonga; Ma, Hong-xiab; Zhao, Jinb; Xie, Song-qianga; Wang, Chao-jieb

Collapse Box

Abstract

Polyamines as a vector to ferry toxic agents have attracted attention, and naphthalimide–polyamine conjugates show potent activity and tumor cell selectivity. The present study was carried out to evaluate the antitumor effects and preliminary systemic toxicity of ANISpm, a novel 3-amino-naphthalimide–spermine conjugate. The polyamine transport system recognition of ANISpm, supported by α-difluoromethylornithine (DFMO)/spermidine (Spd) experiments, is in accordance with its potent cell selectivity between human hepatoma HepG2 cells and normal QSG7701 hepatocyte. The antiproliferative effect is because of ANISpm-induced cell apoptosis, a common characteristic of both naphthalimide and polyamine analogs. Various apoptotic assessment assays have shown that ANISpm can induce apoptosis through the PI3K/Akt signal pathway. The apoptotic signaling cascade involves Akt inactivation, which results in a series of cellular events. The downstream pathway includes Bad dephosphorylation, dissociation of 14-3-3 and Bad, and binding to Bcl-xL, which triggers the disruption of the mitochondrial membrane, release of cytochrome c, and caspases’ cascade activation. Furthermore, the Akt/mTOR signal pathway is also involved in ANISpm-mediated cell-cycle arrest. Additive DFMO or Spd, which only enhances or attenuates ANISpm-mediated cell apoptosis, respectively, does not alter the signal pathway. In addition, preliminary toxicology evaluation showed that ANISpm had no obvious system toxicity at a dose of 2.5 mg/kg, which exerted potent antitumor activity in vivo, especially hematotoxicity. Thus, ANISpm merits further investigation as a potential chemotherapeutic agent against hepatocellular carcinoma.

© 2013 Lippincott Williams & Wilkins, Inc.

Login

Search for Similar Articles
You may search for similar articles that contain these same keywords or you may modify the keyword list to augment your search.