Skip Navigation LinksHome > March 2009 - Volume 110 - Issue 3 > The Rocky Road from Bench to Bedside: β-blockers and Anesthe...
Anesthesiology:
doi: 10.1097/ALN.0b013e318198160b
Editorial Views

The Rocky Road from Bench to Bedside: β-blockers and Anesthetic Postconditioning

Riess, Matthias L. M.D., Ph.D.

Free Access
Article Outline
Collapse Box

Author Information

VOLATILE anesthetics have been shown to exhibit excellent cardioprotection when given temporarily as preconditioning agents hours1 or longer2 before myocardial ischemia/reperfusion or as postconditioning agents3 immediately on myocardial reperfusion, as demonstrated once more by Lange et al.4 in this issue of Anesthesiology. These findings are certainly true for animal experiments, but their translation into clinical practice, unfortunately, remains more challenging than anticipated5,6 for a variety of possible reasons,7 and the improvement in outcome is sometimes more subtle and not as evident at first.8,9
To test a seemingly straightforward hypothesis—cardiac postconditioning by temporary desflurane exposure causes its protective effect by β-adrenergic stimulation—Lange et al.4 used an established in vivo animal model and administered the β1-blocker esmolol or the β2-blocker ICI 118,551 alone or together with desflurane for 30 min following reperfusion after sustained myocardial ischemia. Either of the two antagonists abolished the cardioprotective effect of desflurane as assessed by infarct size measurements. The authors concluded that postconditioning with desflurane is indeed mediated by β-adrenergic stimulation. This was supported by additional findings in their study that blockade of certain intracellular signaling pathways known to be downstream of β-activation also abolished desflurane postconditioning.
So far, so good. The scientist in us is probably pleased to have one more piece of evidence that—at least in rabbits—desflurane given on myocardial reperfusion is beneficial for the heart and to have identified another pathway how this may actually be mediated inside the cell. As clinicians, however, we naturally wonder if any of these results may have any bearing on how to anesthetize patients at risk for myocardial ischemia, which and how much anesthetic to choose, and what other drugs to give or to avoid when we encounter myocardial ischemia/reperfusion in our patients. One valid, yet incomplete, interpretation of the current animal study could be that β-blockers—β1 or β2—are best to be avoided in this context because they abolish the cardioprotective effect of desflurane given on reperfusion.
The truly interesting point of this study,4 however, is a different one. The authors also studied the effect of sustained β1-blockade on reperfusion by administering esmolol during the entire reperfusion period, in either the absence or the presence of the anesthetic given on initial reperfusion. Interestingly, in contrast to shorter β1-blockade, the sustained β1-blockade not only failed to abolish the beneficial effect of desflurane, but it turned out to be as protective as desflurane postconditioning itself. These additional findings introduce a whole new level of complexity to the study. Although short-term β-blockade—if one focuses strictly on the current study—appears to be neutral at best or actually counterproductive in the presence of desflurane, sustained β-blockade, in contrast, appears to be beneficial. This benefit outweighs the negative effect on desflurane postconditioning, which—according to the authors—could be attributed to the energy-sparing effect of β1-blockade, mainly by heart rate reduction.
When taken together, these differential findings strongly suggest a biphasic role of β-blockade on reperfusion; the present study, however, does not provide any evidence as to what duration of β-blockade may possibly still be detrimental and what duration may already be beneficial. The same could be said about the effect of β-activation on reperfusion, in this case by desflurane: how much and how long would it be beneficial and when would this change to the contrary? What was probably planned as a simple and straightforward study trying to provide some more mechanistic insights on the interesting phenomenon of anesthetic postconditioning now opens the door to a multitude of unanswered questions. Apart from the optimal duration of β-activation versus β-blockade on myocardial reperfusion, one wonders if the current results are specific for desflurane only, an anesthetic known to have sympathomimetic effects10 compared to other anesthetics. Is the effect of desflurane on the heart in this in vivo model direct or indirect? Would short-term catecholamine administration be as beneficial as desflurane? Would the cardioprotective effect of sustained β-blockade on reperfusion actually lead to an overall improved outcome? One only has to notice the significantly decreased blood pressures in the sustained esmolol groups provided in table 14 to be immediately reminded of the vivid discussion triggered by the results from the POISE trial published only a few months ago.11
The current study by Lange and colleagues4 represents another example for the challenges we inevitably face when trying to extract and translate findings from basic science research into patient care. The amount of new and unanswered questions suddenly multiplies, and the road from bench to bedside appears rockier than ever. Does this mean we should give up? By no means; in our attempt to understand nature, we have no choice but to break things down into smaller, digestible pieces that can be scientifically evaluated but carry the natural shortcoming of providing only a very limited aspect of the whole. Just like in a complicated puzzle, the art is to identify and study the neighboring pieces next and slowly expand our insight.
In this sense, Lange et al.4 may be commended for not having restricted their experiments to short-term β-blockade only, and they and others may certainly be encouraged to further investigate the interesting biphasic effects of β-activation and β-blockade on attenuating ischemia/reperfusion injury. Sometimes, it takes nothing less than a rocky road to reach the summit.
Matthias L. Riess, M.D., Ph.D.
Departments of Anesthesiology and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin. mriess@mcw.edu
Back to Top | Article Outline

References

1. Kersten JR, Schmeling TJ, Pagel PS, Gross GJ, Warltier DC: Isoflurane mimics ischemic preconditioning via activation of KATP channels: Reduction of myocardial infarct size with an acute memory phase. Anesthesiology 1997; 87:361–70

2. Tonkovic-Capin M, Gross GJ, Bosnjak ZJ, Tweddell JS, Fitzpatrick CM, Baker JE: Delayed cardioprotection by isoflurane: Role of KATP channels. Am J Physiol Heart Circ Physiol 2002; 283:H61–8

3. Preckel B, Schlack W, Comfere T, Obal D, Barthel H, Thamer V: Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 1998; 81:905–12

4. Lange M, Redel A, Lotz C, Smul TM, Blomeyer CA, Frank A, Stumpner J, Roewer N, Kehl F: Desflurane-induced postconditioning is mediated by β-adrenergic signaling: Role of β1 and β2 adrenergic receptors, protein kinase A, and calcium/calmodulin dependent protein kinase II. Anesthesiology 2009; 110:516–28

5. De Hert SG, Van der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE: Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 2004; 101:299–310

6. Piriou V, Mantz J, Goldfarb G, Kitakaze M, Chiari P, Paquin S, Cornu C, Lecharny JB, Aussage P, Vicaut E, Pons A, Lehot JJ: Sevoflurane preconditioning at 1 MAC only provides limited protection in patients undergoing coronary artery bypass surgery: A randomized bi-centre trial. Br J Anaesth 2007; 99:624–31

7. Riess ML, Stowe DF, Warltier DC: Cardiac pharmacological preconditioning with volatile anesthetics: From bench to bedside? Am J Physiol Heart Circ Physiol 2004; 286:H1603–7

8. Julier K, da Silva R, Garcia C, Bestmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M: Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 2003; 98:1315–27

9. Garcia C, Julier K, Bestmann L, Zollinger A, von Segesser LK, Pasch T, Spahn DR, Zaugg M: Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth 2005; 94:159–65

10. Ebert TJ, Muzi M: Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993; 79:444–53

11. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, Xavier D, Chrolavicius S, Greenspan L, Pogue J, Pais P, Liu L, Xu S, Malaga G, Avezum A, Chan M, Montori VM, Jacka M, Choi P: Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet 2008; 371:1839–47

Cited By:

This article has been cited 2 time(s).

Anesthesiology
Esmolol May Abolish Volatile Anesthetic-induced Postconditioning by Scavenging Reactive Oxygen Species
Lange, M; Riess, ML
Anesthesiology, 111(4): 925.
10.1097/ALN.0b013e3181b6548b
PDF (68) | CrossRef
Anesthesiology
Esmolol May Abolish Volatile Anesthetic-induced Postconditioning by Scavenging Reactive Oxygen Species
Xia, Z; Irwin, MG
Anesthesiology, 111(4): 924-925.
10.1097/ALN.0b013e3181b64c38
PDF (97) | CrossRef
Back to Top | Article Outline

© 2009 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.
Login

Article Tools

Share