Skip Navigation LinksHome > August 2005 - Volume 103 - Issue 2 > Predicting Difficult Intubation in Apparently Normal Patient...
Anesthesiology:
Review Articles

Predicting Difficult Intubation in Apparently Normal Patients: A Meta-analysis of Bedside Screening Test Performance

Shiga, Toshiya M.D., Ph.D.*; Wajima, Zen’ichiro M.D., Ph.D.†; Inoue, Tetsuo M.D., Ph.D.‡; Sakamoto, Atsuhiro M.D., Ph.D.§

Free Access
Article Outline
Collapse Box

Author Information

Collapse Box

Abstract

The objective of this study was to systematically determine the diagnostic accuracy of bedside tests for predicting difficult intubation in patients with no airway pathology. Thirty-five studies (50,760 patients) were selected from electronic databases. The overall incidence of difficult intubation was 5.8% (95% confidence interval, 4.5–7.5%). Screening tests included the Mallampati oropharyngeal classification, thyromental distance, sternomental distance, mouth opening, and Wilson risk score. Each test yielded poor to moderate sensitivity (20–62%) and moderate to fair specificity (82–97%). The most useful bedside test for prediction was found to be a combination of the Mallampati classification and thyromental distance (positive likelihood ratio, 9.9; 95% confidence interval, 3.1–31.9). Currently available screening tests for difficult intubation have only poor to moderate discriminative power when used alone. Combinations of tests add some incremental diagnostic value in comparison to the value of each test alone. The clinical value of bedside screening tests for predicting difficult intubation remains limited.
UNANTICIPATED difficult intubation can be challenging to anesthesiologists. Numerous investigators have attempted to predict difficult intubation by using a simple bedside physical examination. Mallampati et al.1 introduced in 1985 a currently well-known screening test that classifies visibility of the oropharyngeal structure. The distance from the thyroid notch to the mentum (thyromental distance), the distance from the upper border of the manubrium sterni to the mentum (sternomental distance), and a simple summation of risk factors (Wilson risk sum score) are widely recognized as tools for predicting difficult intubation.2,3 Nevertheless, the diagnostic accuracy of these screening tests has varied from trial to trial,4 probably because of differences in the incidence of difficult intubation, inadequate statistical power, different test thresholds, or differences in patient characteristics. Questions remain as to whether a combination of tests may improve predictive accuracy or whether predictive accuracy differs for specific groups of patients, such as obstetric or obese patients, in whom difficult intubation is considered to occur more often than in normal patients. A recent editorial by Yentis5 made clear how hard it is to predict difficult intubation because of its low rate of occurrence and questioned whether attempts at prediction are likely to be useful.
To answer these questions, we systematically reviewed and synthesized the published data relating to the performance of diagnostic tests for difficult intubation in normal-airway patients scheduled to undergo general anesthesia.
Back to Top | Article Outline
Study Selection and Quality Assessment
We searched MEDLINE (1980 through May 2004) and the Cochrane Central Register of Controlled Trials (2004, issue 1) for reports of studies and trials relating to the accuracy of predictive tests for difficult intubation. No language restrictions were applied. The initial search terms were difficult airway, difficult intubation, and difficult laryngoscopy. A manual search of references cited in published reports and reviews was also performed.
Fig. 1
Fig. 1
Image Tools
Reports were independently selected and reviewed by two investigators (T. S. and Z. W.). The systematic review process for selection of eligible studies is shown in figure 1. Reported studies were selected if they met the following criteria: (1) the study was prospective; (2) at least one bedside diagnostic test was used; (3) absolute numbers of true-positive, false-negative, true-negative, and false-negative results were available or could be derived from the published data; and (4) a standard laryngoscope was used. We did not include articles from any study with insufficient data, with patients whose airway was anatomically abnormal, or with a complicated and not widely accepted scoring system. We excluded retrospective studies, studies requiring impractical and costly diagnostic tests that are not yet widely accepted (e.g., radiologic examinations), and studies involving a special laryngoscope or technique.
The quality of acceptable reports was assessed independently by two authors (T. S. and Z. W.). Studies were graded according to four a priori criteria for quality, as described by Romagnuolo et al.6: (1) blinding, (2) consecutive recruitment of patients, (3) single (vs. composite) accepted standards, and (4) nonselective use of the accepted standard. One point was given for each criterion; the maximum possible score was 4.
Back to Top | Article Outline
Data Extraction
We defined a Cormack–Lehane grade7 of 3 or greater as the accepted standard for difficult intubation, as in most studies included in the review. Some authors reported a required special technique, multiple unsuccessful attempts, or a combination of these as the accepted standard for difficult intubation. If a definition seemed so subjective as to be generally unacceptable, we abandoned it and substituted the Cormack–Lehane grades whenever available. Extracted from the reports were the number of patients, mean age, general patient characteristics, criteria for difficult intubation, type of laryngoscope blade, incidence of difficult intubation, type of screening test, and absolute numbers of true-positive, false-positive, true-negative, and false-negative results. For a diagnostic test to be included in our analysis, at least three reports of that test had to have been identified in our literature search. The Mallampati classification, thyromental distance, sternomental distance, mouth opening, Wilson risk sum score, and a combination of the Mallampati classification and thyromental distance met our inclusion criteria. In addition, we performed subgroup analysis. Obstetric or obese patient groups were analyzed if they were grouped separately within a study and the subgroup appeared in at least three studies.
Back to Top | Article Outline
Data Synthesis
We calculated pooled estimates of the incidence of difficult intubation, sensitivity, specificity, positive and negative likelihood ratios, and natural logarithm of diagnostic odds ratio by the DerSimonian–Laird random-effects model.8 Rates were pooled after logit transformation, weighting study rates by the inverse ratio of their variance plus the between-study variance for that measure, and then retransformed back into standard proportions with 95% confidence intervals (CIs). Homogeneity of the effect size across trials was tested by chi-square statistics. Heterogeneity was defined as P < 0.1.
Sensitivity is the ratio of the true-positive number to the sum of true-positive plus false-negative numbers. Specificity is the ratio of the true-negative number to the sum of true-negative plus false-positive numbers.9 Likelihood ratios are obtained as follows: positive likelihood ratio = sensitivity/(1 − specificity); negative likelihood ratio = (1 − sensitivity)/specificity. Likelihood ratios greater than 10 and less than 0.1 are considered strong evidence for ruling in or ruling out diagnoses, respectively, under most circumstances.10 The log diagnostic odds ratio is the logit (positive likelihood ratio/negative likelihood ratio), indicating a summary of diagnostic performance.11
The diagnostic performance of each test was also assessed by means of summary receiver operating characteristic (ROC) curves according to the method described by Moses et al.12 We constructed ROC curves. Briefly, the true-positive rate was plotted against the false-positive rate for each study. To avoid calculation problems by having values of zero, 0.5 was added to each cell of the respective contingency table. The summary ROC model is described by the following equation D = a + bS. The summary ROC curve analysis is based on regression analysis of logit transformed data, which plots the difference between the logit of the true-positive rate (TPR) and the logit of the false-positive rate (FPR) (D = logit TPR − logit FPR) on the y-axis and their sum (S = logit TPR + logit FPR) on the x-axis. The y-axis (D) is equivalent to the log diagnostic odds ratio, and the x-axis (S) is a measure of how the test characteristics vary with the test threshold. The regression coefficient b examines the extent to which the log odds ratio is dependent on the threshold values chosen. The linear regression analysis was weighted by the inverse of the variance of D. The regression line was back-transformed to the ROC space.
Back to Top | Article Outline
Assessment of Publication Bias
To assess the potential for publication bias, a funnel plot was constructed in which the log of relative risks was plotted against the associated number of patients.13 In addition, correlation between standardized log relative risks and the associated number of patients was determined by the Kendall rank correlation coefficient. The correlation between sample size and relative risk would be strong if not many small studies with null results were published. A significant correlation between sample size and relative risk would not exist in the absence of publication bias. Statistical significance was defined for treatment effects as P < 0.05 and for heterogeneity and publication bias as P < 0.1. Analyses were performed with Microsoft Excel (Microsoft Corporation, Redmond, WA), Meta-DiSc® (Hospital Ramón y Cajal, Madrid, Spain), and Number Cruncher Statistical System 2004 (NCSS Statistical Systems, Kaysville, UT).
Back to Top | Article Outline
Results
Table 1
Table 1
Image Tools
Table 1
Table 1
Image Tools
The electronic search resulted in 3,318 hits. Thirty-five studies14–48 representing 50,760 patients met the inclusion criteria (table 1). Non–English-language reports included 3 in French, 2 in German, 1 in Italian, and 1 in Japanese. We excluded the original articles by Mallampati et al.1 and Wilson et al.3 because the test designers were also the test assessors. One report49 was included in the analysis of obese populations but was excluded from the final analysis because of possible duplication of data.
The overall incidence of difficult intubation was 5.8% (95% CI, 4.5–7.5%) for the overall patient population, 6.2% (95% CI, 4.6–8.3%) for normal patients excluding obstetric and obese patients, 3.1% (95% CI, 1.7–5.5%) for obstetric patients, and 15.8% (95% CI, 14.3–17.5%) for obese patients. Data pertaining only to obstetric patients were given in four reports. Of these reports, three assessed risk on the basis of the Mallampati classification and one assessed risk on the basis of sternomental distance; therefore, we analyzed only the Mallampati test data. Data pertaining exclusively to obese patients were given in four reports, all of which assessed risk on the basis of the Mallampati test.
Table 2
Table 2
Image Tools
Table 2
Table 2
Image Tools
Fig. 2
Fig. 2
Image Tools
Pooled estimates of the incidence of difficult intubation, sensitivity, specificity, positive and negative likelihood ratios, and natural logarithm of diagnostic odds ratio as well as the regression model equation for each test are shown in table 2. The summary ROC curve for each test is shown in figure 2. With the exception of thyromental distance, diagnostic accuracy did not vary with the test threshold in any test. Because diagnostic accuracy tended to vary with the test threshold for thyromental distance (P = 0.056), we calculated likelihood ratios with an adjusted cutoff point; a stricter criterion for thyromental distance (≪ 6.0 cm) was applied. In a subgroup of eight studies,14,20–23,26,32,42 with a cutoff of 6.0 cm or less, pooled positive and negative likelihood ratios were updated to 4.1 (95% CI, 2.3–7.0) and 0.8 (95% CI, 0.6–0.9), respectively, with significant heterogeneity, indicating that a thyromental distance of 6.0 cm or less slightly improved the prediction of difficult intubation.
We calculated posttest probability because it enabled us to generalize our results for varying previous incidence.10,11 Calculation of posttest probabilities by means of likelihood ratios is shown in table 2. For example, patients with a 5% pretest probability of difficult intubation have a 15% risk of difficult intubation after a positive thyromental distance test result and a 4% risk of difficult intubation after a negative thyromental distance test result. The risk of difficult intubation after positive and negative test results is shown with a possible range of pretest probabilities (table 2).
Symmetry in the funnel plot was confirmed by significant Kendall correlation coefficients of 0.18 (P = 0.14) for the Mallampati test and 0.23 (P = 0.19) for thyromental distance, which suggests the absence of publication bias.
Back to Top | Article Outline
Mallampati Classification
The Mallampati score may estimate the size of the tongue relative to the oral cavity1,4 and may possibly indicate whether displacement of the tongue by the laryngoscope blade is likely to be easy or difficult. In addition, it assesses whether the mouth can be opened adequately to permit intubation. The Mallampati test assesses not only pharyngeal structure but also head and neck mobility. Recent investigation50 has suggested that craniocervical extension relates to mouth opening, and limited head or neck mobility may result in a poor Mallampati scores. Despite theoretical arguments for this test, poor pooled sensitivity values and relatively moderate specificity values were obtained in our analysis. Positive and negative likelihood ratios were moderate but unsatisfactory for clinical use. Heterogeneity was present in sensitivity and specificity. Heterogeneity and inadequate diagnostic performance may result in part from inconsistency or uncertainty in performing the tests, e.g., the Mallampati test may have been conducted with or without phonation and/or with different head or tongue positions. Some reports omitted descriptions of how the tests were administered. Because of these factors, the Mallampati test may be of marginal diagnostic value.
Back to Top | Article Outline
Thyromental Distance
Thyromental distance is considered to be an indicator of mandibular space.4 This test also reflects whether displacement of the tongue by the laryngoscope blade will be easy or difficult. The diagnostic value of thyromental distance proved unsatisfactory in our analysis. A wide range in test sensitivity may result in heterogeneity. Heterogeneity may be due to the variety of test thresholds: cutoff points varied from 4.0 to 7.0 cm. The summary ROC analysis showed a trend toward variation in overall diagnostic performance of the thyromental test in relation to test threshold. Our additional analysis showed that the positive likelihood ratio improved from 3.4 to 4.1 when a stricter cutoff criterion (≪ 6.0 cm) was applied. Because one study21 with a cutoff of less than 4.0 cm yielded higher diagnostic performance with positive and negative likelihood ratios of 9.4 and 0.03, respectively, we should reevaluate the test threshold for thyromental distance. Another source of heterogeneity may be variation in measurement conditions: Thyromental distance could have been measured from inside or outside the mentum. The methods of measurement must be standardized.
Back to Top | Article Outline
Sternomental Distance
Sternomental distance can be an indicator of head and neck mobility.31 Head extension is believed to be an important factor in determining the ease or difficulty of intubation. Among single-factor tests, sternomental distance yielded the highest positive likelihood ratio and diagnostic odds ratio with moderate sensitivity and specificity. The negative likelihood ratio was lower than that of any other test, suggesting that it is the best single test for ruling out difficult intubation. The cutoff point of sternomental distance was consistently 12.5 to 13.5 cm. However, only three studies were included in our analysis. Therefore, the diagnostic performance remains inconclusive. Further investigation is required because so few studies address sternomental distance.
Back to Top | Article Outline
Mouth Opening
Mouth opening seemed in our analysis to be an inadequate predictor of difficult intubation. It may be argued that mouth opening indicates movement of the temporomandibular joint and that significantly limited mouth opening hinders exposure of the larynx. Several studies based on multivariate analysis3,51 indicated that limited mouth opening is strongly associated with difficult intubation. Unexpected results may have been obtained in our analysis, because measurement thresholds varied. The threshold was even unclear in one study.32 Our analysis suggests that mouth opening is not a useful test; however, we could not determine whether this is because of limited data or because mouth opening is truly not useful in predicting difficult intubation. This area would benefit from further investigation.
Back to Top | Article Outline
Wilson Risk Score
The CI of the Wilson risk score is narrower than that of other tests, and sensitivity and specificity are homogeneous. The same criterion (score ≫ 2) was applied in all studies included in our analysis, making the data cluster very closely together and thus yielding a narrower CI in pooled sensitivity and specificity. All included studies set the test threshold somewhat high; therefore, sensitivity remained low and specificity remained high on our summary ROC curve. The Wilson risk score with a cutoff value of 2 or greater yielded a low true-positive rate and a low false-positive rate, meaning that the test threshold correctly identifies patients for whom intubation will be easy. Although our analysis did not include the original data of Wilson et al.,3 our pooled sensitivity and specificity with a cutoff score of 2 or greater seem to be similar to their original sensitivity and specificity data. This suggests that the Wilson risk score has high reproducibility.
Back to Top | Article Outline
Combination of Mallampati Classification and Thyromental Distance
We found that a combination of the Mallampati test and thyromental distance most accurately predicted difficult intubation. This combination yielded low sensitivity, but the positive likelihood ratio (9.9) supports the test as a strong predictor of difficult intubation. The diagnostic odds ratio (3.3) and the area under the summary ROC curve (0.84) are the highest of all tests. Patients with a 5% pretest probability of difficult intubation were shown to have a 34% risk of difficult intubation after a positive result for the combination test, a 16% risk after a positive result of Mallampati test alone, and a 15% risk after a positive result of thyromental distance alone. Therefore, the discriminative power is greater when the tests are used in combination rather than alone. It is suggested that a combination of the Mallampati classification and thyromental distance has the highest discriminative power among currently available tests. However, heterogeneity and an insufficient number of studies limit definitive conclusions.
Back to Top | Article Outline
Mallampati Classification in Obstetric and Obese Populations
We found that diagnostic performance of the Mallampati test in obstetric and obese populations is similar to that in the overall population. The diagnostic odds ratios in these populations are similar, and the trend toward poor sensitivity and fair specificity remained. We also found the incidence of difficult intubation in obese (body mass index > 30) patients to be more than three times that of normal patients. Obese patients with a 15% pretest probability of difficult intubation had a 34% risk of difficult intubation after a positive Mallampati test result, twice the risk of the normal population with a 5% pretest probability. Excessive soft tissue in the velopalate, retropharynx, and submandibular regions in obese patients may cause difficulty in laryngoscopy.49 Our result confirms the common understanding that obese patients have a greater incidence of difficult intubation than that of normal patients. Because of the high incidence of difficult intubation in these patients, the Mallampati test may yield higher posttest probability of difficult intubation in obese patients than in normal patients. Data for obstetric population, however, remain inconclusive because of the small number of studies and the heterogeneity.
Back to Top | Article Outline
Strengths and Limitations
Our meta-analysis showed the incidence of difficult intubation in normal patients without pathologic airway anatomy to be 5.8%, which lies within the limits of the incidence reported in the literature we reviewed.2,4,52,53 This can be viewed as a strength in terms of the external validity of our findings. However, our meta-analysis has several limitations. First, publication bias was not identified for the Mallampati classification and for thyromental distance. However, few studies were included for the other diagnostic tests; there may be unpublished studies. Second, the reference standard for difficult intubation differed somewhat among studies. Most studies defined difficult intubation as a Cormack–Lehane grade of 3 or greater, but some studies used other classification systems (e.g., Intubation Difficulty Scale Score17) or repeated attempts.19,26,40 The Cormack–Lehane scale was not originally designed for grading the degree of difficulty in laryngoscopy or tracheal intubation.5 In addition, laryngoscopy with or without application of external cricoid pressure or of backward, upward, and rightward pressure (BURP maneuver) on the thyroid cartilage to facilitate a laryngoscopic view might have affected the Cormack–Lehane grade in individual studies. Controversy lingers as to the definitions of difficult intubation and difficult laryngoscopy.5,53
Given that screening tests included proved to have inadequate diagnostic power, is any attempt at prediction likely to be useful? Should any predictive attempt be advocated? This question cannot be generally answered; however, as Wilson stated, “No test is likely to be perfect, therefore, it remains essential that every anesthetist must be trained and equipped to deal with the now much less common, unexpected failure to intubate.”54 We concur, and we believe that attempts at prediction are much less important than knowing what to do when difficulty is encountered.
In conclusion, currently available screening tests for difficult intubation have only poor to moderate discriminative power when used alone. Combinations of individual tests or risk factors add some incremental diagnostic value in comparison to the value of each test alone. However, the clinical value of these bedside screening tests for predicting difficult intubation remains limited.
The authors thank Joseph Lau, M.D. (Professor of Medicine and Clinical Research and Director of the Center for Clinical Evidence Synthesis, Tufts-New England Medical Center, Boston, Massachusetts), for providing statistical advice and reviewing the manuscript and Javier Zamora, M.D. (Associate Professor, Unidad de Bioestadística Clínica, Hospital Ramón y Cajal, Madrid, Spain), for his courtesy of providing statistical software. We also thank Toshiro Shitara, M.D., Ph.D. (Chief Anesthesiologist, Sakakibara Memorial Hospital, Tokyo, Japan), for his superb technical assistance.
Back to Top | Article Outline

References

1. Mallampati SR, Gatt SP, Gugino LD, Desai SP, Waraksa B, Freiberger D, Liu PL: A clinical sign to predict difficult tracheal intubation: A prospective study. Can Anaesth Soc J 1985; 32:429–34

2. Janssens M, Hartstein G: Management of difficult intubation. Eur J Anaesthesiol 2001; 18:3–12

3. Wilson ME, Spiegelhalter D, Robertson JA, Lesser P: Predicting difficult intubation. Br J Anaesth 1988; 61:211–6

4. Randell T: Prediction of difficult intubation. Acta Anaesthesiol Scand 1996; 40:1016–23

5. Yentis SM: Predicting difficult intubation: Worthwhile exercise or pointless ritual? Anaesthesia 2002; 57:105–9

6. Romagnuolo J, Bardou M, Rahme E, Joseph L, Reinhold C, Barkun AN: Magnetic resonance cholangiopancreatography: A meta-analysis of test performance in suspected biliary disease. Ann Intern Med 2003; 139:547–57

7. Cormack RS, Lehane J: Difficult tracheal intubation in obstetrics. Anaesthesia 1984; 39:1105–11

8. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials 1986; 7:177–88

9. Altman DG, Bland JM: Diagnostic tests: 1. Sensitivity and specificity. BMJ 1994; 308:1552

10. Deeks JJ, Altman DG: Diagnostic tests: 4. Likelihood ratios. BMJ 2004; 329:168–9

11. Deeks JJ: Systematic reviews of evaluations of diagnostic and screening tests, Systematic Reviews in Health Care: Meta-Analysis in Context, 2nd edition. Edited by Egger M, Smith GD, Altman DG. London, BMJ Books, 2001, pp 248–82

12. Moses LE, Shapiro D, Littenberg B: Combining independent studies of a diagnostic test into a summary ROC curve: Data-analytic approaches and some additional considerations. Stat Med 1993; 12:1293–316

13. Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50:1088–101

14. Ezri T, Medalion B, Weisenberg M, Szmuk P, Warters RD, Charuzi I: Increased body mass index per se is not a predictor of difficult laryngoscopy. Can J Anaesth 2003; 50:179–83

15. Gupta S, Pareek S, Dulara SC: Comparison of two methods for predicting difficult intubation in obstetric patients. Middle East J Anesthesiol 2003; 17:275–85

16. Iohom G, Ronayne M, Cunningham AJ: Prediction of difficult tracheal intubation. Eur J Anaesthesiol 2003; 20:31–6

17. Juvin P, Lavaut E, Dupont H, Lefevre P, Demetriou M, Dumoulin JL, Desmonts JM: Difficult tracheal intubation is more common in obese than in lean patients. Anesth Analg 2003; 97:595–600

18. Khan ZH, Kashfi A, Ebrahimkhani E: A comparison of the upper lip bite test (a simple new technique) with modified Mallampati classification in predicting difficulty in endotracheal intubation: A prospective blinded study. Anesth Analg 2003; 96:595–9

19. Brodsky JB, Lemmens HJ, Brock-Utne JG, Vierra M, Saidman LJ: Morbid obesity and tracheal intubation. Anesth Analg 2002; 94:732–6

20. Koh LK, Kong CE, Ip-Yam PC: The modified Cormack-Lehane score for the grading of direct laryngoscopy: Evaluation in the Asian population. Anaesth Intensive Care 2002; 30:48–51

21. Ayoub C, Baraka A, el-Khatib, M, Muallem M, Kawkabani N, Soueide A: A new cut-off point of thyromental distance for prediction of difficult airway. Middle East J Anesthesiol 2000; 15:619–33

22. Vani V, Kamath SK, Naik LD: The palm print as a sensitive predictor of difficult laryngoscopy in diabetics: A comparison with other airway evaluation indices. J Postgrad Med 2000; 46:75–9

23. Suyama H, Tsuno S, Takeyoshi S: The clinical usefulness of predicting difficult endotracheal intubation [in Japanese]. Masui 1999; 48:37–41

24. Wong SH, Hung CT: Prevalence and prediction of difficult intubation in Chinese women. Anaesth Intensive Care 1999; 27:49–52

25. Arne J, Descoins P, Fusciardi J, Ingrand P, Ferrier B, Boudigues D, Aries J: Preoperative assessment for difficult intubation in general and ENT surgery: Predictive value of a clinical multivariate risk index. Br J Anaesth 1998; 80:140–6

26. Bilgin H, Ozyurt G: Screening tests for predicting difficult intubation: A clinical assessment in Turkish patients. Anaesth Intensive Care 1998; 26:382–6

27. Ulrich B, Listyo R, Gerig HJ, Gabi K, Kreienbuhl G: The difficult intubation: The value of BURP and 3 predictive tests of difficult intubation [in German]. Anaesthesist 1998; 47:45–50

28. Voyagis GS, Kyriakis KP, Dimitriou V, Vrettou I: Value of oropharyngeal Mallampati classification in predicting difficult laryngoscopy among obese patients. Eur J Anaesthesiol 1998; 15:330–4

29. Bergler W, Maleck W, Baker-Schreyer A, Ungemach J, Petroianu G, Hormann K: The Mallampati score: Prediction of difficult intubation in otolaryngologic laser surgery by Mallampati Score [in German]. Anaesthesist 1997; 46:437–40

30. Yamamoto K, Tsubokawa T, Shibata K, Ohmura S, Nitta S, Kobayashi T: Predicting difficult intubation with indirect laryngoscopy. Anesthesiology 1997; 86:316–21

31. Al Ramadhani S, Mohamed LA, Rocke DA, Gouws E, Ramadhani SA: Sternomental distance as the sole predictor of difficult laryngoscopy in obstetric anaesthesia. Br J Anaesth 1996; 77:312–6

32. el-Ganzouri, AR, McCarthy RJ, Tuman KJ, Tanck EN, Ivankovich AD: Preoperative airway assessment: predictive value of a multivariate risk index. Anesth Analg 1996; 82:1197–204

33. Jacobsen J, Jensen E, Waldau T, Poulsen TD: Preoperative evaluation of intubation conditions in patients scheduled for elective surgery. Acta Anaesthesiol Scand 1996; 40:421–4

34. Laplace E, Benefice S, Marti Flich J, Patrigeon RG, Combourieu E: Difficult intubation: A prospective evaluation of the Mallampati and Wilson tests [in French]. Cah Anesthesiol 1995; 43:205–8

35. Samra SK, Schork MA, Guinto Jr FC: A study of radiologic imaging techniques and airway grading to predict a difficult endotracheal intubation. J Clin Anesth 1995; 7:373–9

36. Tse JC, Rimm EB, Hussain A: Predicting difficult endotracheal intubation in surgical patients scheduled for general anesthesia: A prospective blind study. Anesth Analg 1995; 81:254–8

37. Descoins P, Arne J, Bresard D, Aries J, Fusciardi J: Proposal for a new multifactor screening score of difficult intubation in ORL and stomatognathic surgery: Preliminary study [in French]. Ann Fr Anesth Reanim 1994; 13:195–200

38. Ita CE, Eshiet AI, Akpan SG: Recognition of the difficult airway in normal Nigerian adults (a prospective study). West Afr J Med 1994; 13:102–4

39. Rose DK, Cohen MM: The airway: Problems and predictions in 18,500 patients. Can J Anaesth 1994; 41:372–83

40. Savva D: Prediction of difficult tracheal intubation. Br J Anaesth 1994; 73:149–53

41. Restelli L, Moretti MP, Todaro C, Banfi L: The Mallampati’s scale: A study of reliability in clinical practice [in Italian]. Minerva Anestesiol 1993; 59:261–5

42. Butler PJ, Dhara SS: Prediction of difficult laryngoscopy: An assessment of the thyromental distance and Mallampati predictive tests. Anaesth Intensive Care 1992; 20:139–42

43. Cohen SM, Laurito CE, Segil LJ: Examination of the hypopharynx predicts ease of laryngoscopic visualization and subsequent intubation: A prospective study of 665 patients. J Clin Anesth 1992; 4:310–4

44. Rocke DA, Murray WB, Rout CC, Gouws E: Relative risk analysis of factors associated with difficult intubation in obstetric anesthesia. Anesthesiology 1992; 77:67–73

45. Yeo SW, Chong JL, Thomas E: Difficult intubation: A prospective study. Singapore Med J 1992; 33:362–4

46. Frerk CM: Predicting difficult intubation. Anaesthesia 1991; 46:1005–8

47. Oates JD, Macleod AD, Oates PD, Pearsall FJ, Howie JC, Murray GD: Comparison of two methods for predicting difficult intubation. Br J Anaesth 1991; 66:305–9

48. Pottecher T, Velten M, Galani M, Forrler M: Comparative value of clinical signs of difficult tracheal intubation in women [in French]. Ann Fr Anesth Reanim 1991; 10:430–5

49. Ezri T, Gewurtz G, Sessler DI, Medalion B, Szmuk P, Hagberg C, Susmallian S: Prediction of difficult laryngoscopy in obese patients by ultrasound quantification of anterior neck soft tissue. Anaesthesia 2003; 58:1111–4

50. Calder I, Picard J, Chapman M, O’Sullivan, C, Crockard HA: Mouth opening: A new angle. Anesthesiology 2003; 99:799–801

51. Karkouti K, Rose DK, Wigglesworth D, Cohen MM: Predicting difficult intubation: A multivariable analysis. Can J Anaesth 2000; 47:730–9

52. Practice Guidelines for Management of the Difficult Airway: An updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 2003; 98:1269–77

53. Crosby ET, Cooper RM, Douglas MJ, Doyle DJ, Hung OR, Labrecque P, Muir H, Murphy MF, Preston RP, Rose DK, Roy L: The unanticipated difficult airway with recommendations for management. Can J Anaesth 1998; 45:757–76

54. Wilson ME: Predicting difficult intubation. Br J Anaesth 1993; 71:333–4

Cited By:

This article has been cited 81 time(s).

Anaesthesia
Nasotracheal intubation with three indirect laryngoscopes assisted by standard or modified Magill forceps
Staar, S; Biesler, I; Muller, D; Pfortner, R; Mohr, C; Groeben, H
Anaesthesia, 68(5): 467-471.
10.1111/anae.12175
CrossRef
Bmc Anesthesiology
A systematic review of the role of videolaryngoscopy in successful orotracheal intubation
Healy, DW; Maties, O; Hovord, D; Kheterpal, S
Bmc Anesthesiology, 12(): -.
ARTN 32
CrossRef
British Journal of Anaesthesia
Control group bias: a potential cause of over-estimating the benefit of videolaryngoscopy on laryngeal view
Hurford, D; Cook, T; Nolan, J; Mihai, R
British Journal of Anaesthesia, 111(1): 124-125.
10.1093/bja/aet184
CrossRef
Internal and Emergency Medicine
The effect of body mass index on intubation success rates and complications during emergency airway management
Dargin, JM; Emlet, LL; Guyette, FX
Internal and Emergency Medicine, 8(1): 75-82.
10.1007/s11739-012-0874-x
CrossRef
Acta Anaesthesiologica Scandinavica
The LMA-SupremeTM as an intubation conduit in patients with known difficult airways: a prospective evaluation study
van Zundert, TCRV; Wong, DT; van Zundert, AAJ
Acta Anaesthesiologica Scandinavica, 57(1): 77-81.
10.1111/aas.12011
CrossRef
Canadian Journal of Anesthesia-Journal Canadien D Anesthesie
Review article: Practical current issues in perioperative patient safety
Eichhorn, JH
Canadian Journal of Anesthesia-Journal Canadien D Anesthesie, 60(2): 111-118.
10.1007/s12630-012-9852-z
CrossRef
Rural and Remote Health
Access to difficult airway equipment and training for rural GP-anaesthetists in Australia: results of a 2012 survey
Leeuwenburg, TJ
Rural and Remote Health, 12(4): -.
ARTN 2127
CrossRef
British Journal of Anaesthesia
Complications and failure of airway management
Cook, TM; MacDougall-Davis, SR
British Journal of Anaesthesia, 109(): I68-I85.
10.1093/bja/aes393
CrossRef
Journal of Anesthesia
How can we improve mask ventilation in patients with obstructive sleep apnea during anesthesia induction?
Sato, Y; Ikeda, A; Ishikawa, T; Isono, S
Journal of Anesthesia, 27(1): 152-156.
10.1007/s00540-012-1520-5
CrossRef
British Journal of Anaesthesia
Jet or intensive care unit ventilator during simulated percutaneous transtracheal ventilation: a lung model study
Liu, YH; Wang, AL; Marchese, AD; Kacmarek, RM; Jiang, Y
British Journal of Anaesthesia, 110(3): 456-462.
10.1093/bja/aes417
CrossRef
Telemedicine and E-Health
Telemedicine Pre-anesthesia Evaluation: A Randomized Pilot Trial
Applegate, RL; Gildea, B; Patchin, R; Rook, JL; Wolford, B; Nyirady, J; Dawes, TA; Faltys, J; Ramsingh, DS; Stier, G
Telemedicine and E-Health, 19(3): 211-216.
10.1089/tmj.2012.0132
CrossRef
Anaesthesia
Sugammadex to rescue a "can't ventilate' scenario in an anticipated difficult intubation: is it the answer?
Mendonca, C
Anaesthesia, 68(8): 795-799.
10.1111/anae.12311
CrossRef
Anaesthesia
Laryngoscopy in a bariatric surgical population
Simpson, K; Zydorowicz, B
Anaesthesia, 68(8): 886.

British Journal of Anaesthesia
Anticipation of the difficult airway: preoperative airway assessment, an educational and quality improvement tool
Cattano, D; Killoran, PV; Iannucci, D; Maddukuri, V; Altamirano, AV; Sridhar, S; Seitan, C; Chen, Z; Hagberg, CA
British Journal of Anaesthesia, 111(2): 276-285.
10.1093/bja/aet029
CrossRef
Anaesthesia
Pre-operative detection of valvular heart disease - A reply
van Klei, WA; Kalkman, CJ; Rutten, CLG; Moons, KGM
Anaesthesia, 61(7): 718-719.

Anaesthesia
A quantitative review and meta-analysis of performance of non-standard laryngoscopes and rigid fibreoptic intubation aids
Mihai, R; Blair, E; Kay, H; Cook, TM
Anaesthesia, 63(7): 745-760.
10.1111/j.1365-2044.2008.05489.x
CrossRef
Anaesthesia
Thyromental distance measurement - fingers don't rule
Baker, PA; Depuydt, A; Thompson, JMD
Anaesthesia, 64(8): 878-882.
10.1111/j.1365-2044.2009.05985.x
CrossRef
Emergency Medicine Clinics of North America
High-Risk Chief Complaints II: Disorders of the Head and Neck
Nentwich, L; Ulrich, AS
Emergency Medicine Clinics of North America, 27(4): 713-+.
10.1016/j.emc.2009.08.002
CrossRef
Anaesthesia
Comparison of the Glidescope (R), the McGrath (R), the Airtraq (R) and the Macintosh laryngoscopes in simulated difficult airways
Savoldelli, GL; Schiffer, E; Abegg, C; Baeriswyl, V; Clergue, F; Waeber, JL
Anaesthesia, 63(): 1358-1364.
10.1111/j.1365-2044.2008.05653.x
CrossRef
British Journal of Anaesthesia
Expected difficult tracheal intubation: a prospective comparison of direct laryngoscopy and video laryngoscopy in 200 patients
Jungbauer, A; Schumann, M; Brunkhorst, V; Borgers, A; Groeben, H
British Journal of Anaesthesia, 102(4): 546-550.
10.1093/bja/aep013
CrossRef
Anaesthesia
Mouth opening and jaw protrusion measured using three-dimensional motion analysis
Roberts, M; Curtis, E; Mani, M; Goodwin, N; Wilkes, AR; Zatman, T; Holt, C
Anaesthesia, 65(4): 428-429.

Journal of Clinical Anesthesia
Evaluation of the upper lip bite test in predicting difficult laryngoscopy
Myneni, N; O'Leary, AM; Sandison, M; Roberts, K
Journal of Clinical Anesthesia, 22(3): 174-178.
10.1016/j.jclinane.2009.06.004
CrossRef
Anaesthesia
The LMA CTrach (TM) in airway resuscitation: six case reports
Goldman, AJ; Rosenblatt, WH
Anaesthesia, 61(): 975-977.
10.1111/j.1365-2044.2006.04787.x
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Prediction and definition of difficult mask ventilation and difficult intubation - Question 1
Diemunsch, P; Langeron, O; Richard, M; Lenfant, F
Annales Francaises D Anesthesie Et De Reanimation, 27(1): 3-14.
10.1016/j.annfar.2007.10.028
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Management of the anticipated difficult airway-a systematic approach: Continuing Professional Development
Drolet, P
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 56(9): 683-701.
10.1007/s12630-009-9144-4
CrossRef
Anaesthesia
A documented previous difficult tracheal intubation as a prognostic test for a subsequent difficult tracheal intubation in adults
Lundstrom, LH; Moller, AM; Rosenstock, C; Astrup, G; Gatke, MR; Wetterslev, J
Anaesthesia, 64(): 1081-1088.
10.1111/j.1365-2044.2009.06057.x
CrossRef
Anaesthesia
A prospective, randomised, cross-over trial comparing the EndoFlex (R) and standard tracheal tubes in patients with predicted easy intubation
Teoh, WHL; Sia, ATH; Fun, WLL
Anaesthesia, 64(): 1172-1177.
10.1111/j.1365-2044.2009.06058.x
CrossRef
Anesthesia and Analgesia
The importance of increased neck circumference to intubation difficulties in obese patients
Gonzalez, H; Minville, V; Delanoue, K; Mazerolles, M; Concina, D; Fourcade, O
Anesthesia and Analgesia, 106(4): 1132-1136.
10.1213/ane.0b013e3181679659
CrossRef
Anesthesia and Analgesia
The Extended Mallampati Score and a Diagnosis of Diabetes Mellitus Are Predictors of Difficult Laryngoscopy in the Morbidly Obese
Mashour, GA; Kheterpal, S; Vanaharam, V; Shanks, A; Wang, LYJ; Sandberg, WS; Tremper, KK
Anesthesia and Analgesia, 107(6): 1919-1923.
10.1213/ane.0b013e31818a9946
CrossRef
Journal of Clinical Neuroscience
Awake fibreoptic intubation in neurosurgery
Langford, RA; Leslie, K
Journal of Clinical Neuroscience, 16(3): 366-372.
10.1016/j.jocn.2008.05.020
CrossRef
Anaesthesia and Intensive Care
Ultrasound quantification of anterior soft tissue thickness fails to predict difficult laryngoscopy in obese patients
Komatsu, R; Sengupta, P; Wadhwa, A; Akca, O; Sessler, DI; Ezri, T; Lenhardt, R
Anaesthesia and Intensive Care, 35(1): 32-37.

Journal of Oral and Maxillofacial Surgery
Prevalence and prediction of difficult intubation in maxillofacial surgery patients
Tuzuner-Oncul, AM; Kucukyavuz, Z
Journal of Oral and Maxillofacial Surgery, 66(8): 1652-1658.
10.1016/j.joms.2008.01.062
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Innovations in anesthesia education: the development and implementation of a resident rotation for advanced airway management
Crosby, E; Lane, A
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 56(): 939-959.
10.1007/s12630-009-9197-4
CrossRef
Journal of Anesthesia
Difficult laryngoscopy caused by massive mandibular tori
Takasugi, Y; Shiba, M; Okamoto, S; Hatta, K; Koga, Y
Journal of Anesthesia, 23(2): 278-280.
10.1007/s00540-008-0717-0
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Optimal remifentanil dose for laryngeal mask airway insertion when co-administered with a single standard dose of propofol
Bouvet, L; Da-Col, X; Rimmele, T; Allaouchiche, B; Chassard, D; Boselli, E
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 57(3): 222-229.
10.1007/s12630-009-9249-9
CrossRef
Anaesthesia
Optimal remifentanil dosage for providing excellent intubating conditions when co-administered with a single standard dose of propofol
Bouvet, L; Stoian, A; Rimmele, T; Allaouchiche, B; Chassard, D; Boselli, E
Anaesthesia, 64(7): 719-726.
10.1111/j.1365-2044.2009.05916.x
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Workshops "Difficult intubation": impact on knowledge and practices
Bally, B; Steib, A; Boisson-Bertrand, D; Cros, AM; Bourgain, JL; Dureuil, B
Annales Francaises D Anesthesie Et De Reanimation, 26(): 633-637.
10.1016/j.annfar.2007.05.001
CrossRef
Anaesthesia
Awake insertion of the fibreoptic intubating LMA CTrach((TM)) in three morbidly obese patients with potentially difficult airways
Wender, R; Goldman, AJ
Anaesthesia, 62(9): 948-951.
10.1111/j.1365-2044.2007.05127.x
CrossRef
Anaesthesia
Intubation training in the real world
Cook, TM
Anaesthesia, 63(4): 434-436.

Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Laryngeal injuries and intubating conditions with or without muscular relaxation: an equivalence study
Bouvet, L; Stoian, A; Jacquot-Laperriere, S; Allaouchiche, B; Chassard, D; Boselli, E
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 55(): 674-684.

British Journal of Anaesthesia
Conversion of epidural labour analgesia to anaesthesia for Caesarean section: a prospective study of the incidence and determinants of failure
Halpern, SH; Soliman, A; Yee, J; Angle, P; Ioscovich, A
British Journal of Anaesthesia, 102(2): 240-243.
10.1093/bja/aen352
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Quality indicator survey of anaesthesia records in hospitals of Aquitaine
Hubert, B; Ausset, S; Auroy, Y; Billard-Decre, C; Tricaud-Vialle, S; Djihoud, A
Annales Francaises D Anesthesie Et De Reanimation, 27(3): 216-221.
10.1016/j.annfar.2007.12.008
CrossRef
British Journal of Anaesthesia
Avoidance of neuromuscular blocking agents may increase the risk of difficult tracheal intubation: a cohort study of 103 812 consecutive adult patients recorded in the Danish Anaesthesia Database
Lundstrom, LH; Moller, AM; Rosenstock, C; Astrup, G; Gatke, MR; Wetterslev, J
British Journal of Anaesthesia, 103(2): 283-290.
10.1093/bja/aep124
CrossRef
International Journal of Obstetric Anesthesia
General anesthesia is unacceptable for elective cesarean section
Reynolds, F
International Journal of Obstetric Anesthesia, 19(2): 212-217.
10.1016/j.ijoa.2009.10.003
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Case series: The McGrath (R) videolaryngoscope - an initial clinical evaluation
Shippey, B; Ray, D; McKeown, D
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 54(4): 307-313.

Anaesthesia, Pain, Intensive Care and Emergency: A.P.I.C.E
Best method to establish the grade of difficult airway. Clinical assessment, techniques and procedures in critical care and ICU
Petrini, F; Moggia, L; Merli, G
Anaesthesia, Pain, Intensive Care and Emergency: A.P.I.C.E, (): 63-70.

Anaesthesia and Intensive Care
Video and optic laryngoscopy assisted tracheal intubation - the new era
Thong, SY; Lim, Y
Anaesthesia and Intensive Care, 37(2): 219-233.

Anesthesia and Analgesia
A Comparison of Lighted Stylet (Surch-Lite (TM)) and Direct Laryngoscopic Intubation in Patients with High Mallampati Scores
Rhee, KY; Lee, JR; Kim, J; Park, S; Kwon, WK; Han, S
Anesthesia and Analgesia, 108(4): 1215-1219.
10.1213/ane.0b013e3181994fba
CrossRef
Anesthesia and Analgesia
A systematic review (meta-analysis) of the accuracy of the Mallampati tests to predict the difficult airway
Lee, A; Fan, LTY; Gin, T; Karmakar, MK; Kee, WDN
Anesthesia and Analgesia, 102(6): 1867-1878.
10.1213/01.ane.0000217211.12232.55
CrossRef
American Journal of Emergency Medicine
Design rationale and intended use of a short optical stylet for routine fiberoptic augmentation of emergency laryngoscopy
Levitan, RM
American Journal of Emergency Medicine, 24(4): 490-495.
10.1016/j.ajem.2005.12.024
CrossRef
International Journal of Obstetric Anesthesia
Maternal obesity and anaesthesia
Wellesley, H; Wharton, NM
International Journal of Obstetric Anesthesia, 17(3): 279-280.
10.1016/j.ijoa.2008.01.008
CrossRef
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie
Rapid sequence induction for appendectomies: a retrospective case-review analysis
Istvan, J; Belliveau, M; Donati, F
Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 57(4): 330-336.
10.1007/s12630-009-9260-1
CrossRef
Chinese Medical Journal
Clinical experience of airway management and tracheal intubation under general anesthesia in patients with scar contracture of the neck
Xue, FS; Liao, X; Li, CW; Xu, YC; Yang, QY; Liu, Y; Liu, JH; Luo, MP; Zhang, YM
Chinese Medical Journal, 121(): 989-997.

Anesthesia and Analgesia
Predictive performance of three multivariate difficult tracheal intubation models: A double-blind, case-controlled study
Naguib, M; Scamman, FL; O'Sullivan, C; Aker, J; Ross, AF; Kosmach, S; Ensor, JE
Anesthesia and Analgesia, 102(3): 818-824.
10.1213/01.ane.0000196507.19771.b2
CrossRef
Anesthesia and Analgesia
Predictive performance of three multivariate difficult tracheal intubation models: A double-blind, case-control study - Repsonse
Naguib, M; Ensor, JE; O'Sullivan, C
Anesthesia and Analgesia, 103(6): 1581.
10.1213/01.ane.0000246271.63477.84
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Why should we inform the patients after difficult tracheal intubation?
Francon, D; Bruder, N
Annales Francaises D Anesthesie Et De Reanimation, 27(5): 426-430.
10.1016/j.annfar.2008.03.006
CrossRef
Anesthesia and Analgesia
Laryngoscopy and Tracheal Intubation in the Head-Elevated Position in Obese Patients: A Randomized, Controlled, Equivalence Trial
Rao, SL; Kunselman, AR; Schuler, HG; DesHarnais, S
Anesthesia and Analgesia, 107(6): 1912-1918.
10.1213/ane.0b013e31818556ed
CrossRef
Anesthesia and Analgesia
Awareness During Anesthesia: Risk Factors, Causes and Sequelae: A Review of Reported Cases in the Literature
Ghoneim, MM; Block, RI; Haffarnan, M; Mathews, MJ
Anesthesia and Analgesia, 108(2): 527-535.
10.1213/ane.0b013e318193c634
CrossRef
Anesthesia and Analgesia
Craniocervical extension improves the specificity and predictive value of the Mallampati airway evaluation
Mashour, GA; Sandberg, WS
Anesthesia and Analgesia, 103(5): 1256-1259.
10.1213/01.ane.0000237402.03329.3b
CrossRef
Acta Anaesthesiologica Scandinavica
A case of unexpected difficult airway due to lingual tonsil hypertrophy
Asbjornsen, H; Kuwelker, M; Softeland, E
Acta Anaesthesiologica Scandinavica, 52(2): 310-312.
10.1111/j.1399-6576.2007.01485.x
CrossRef
Anesthesia and Analgesia
Predictive performance of three multivariate difficult tracheal intubation models: A double-blind, case-control study
van Klei, WA; Kalkman, CJ; Moons, KGM
Anesthesia and Analgesia, 103(6): 1579-1581.
10.1213/01.ane.0000246270.98708.1f
CrossRef
Critical Care
Clinical review: Management of difficult airways
Langeron, O; Amour, J; Vivien, B; Aubrun, F
Critical Care, 10(6): -.
10.1186/cc5112
CrossRef
British Journal of Anaesthesia
ProSeal laryngeal mask airway for laparoscopic gastric banding in a myasthenic, morbidly obese patient
Freo, U; Carron, M; Micaglio, M; Ori, C
British Journal of Anaesthesia, 99(6): 921-922.
10.1093/bja/aem328
CrossRef
American Journal of Respiratory and Critical Care Medicine
Early Identification of Patients at Risk for Difficult Intubation in the Intensive Care Unit Development and Validation of the MACOCHA Score in a Multicenter Cohort Study
De Jong, A; Molinari, N; Terzi, N; Mongardon, N; Arnal, JM; Guitton, C; Allaouchiche, B; Paugam-Burtz, C; Constantin, JM; Lefrant, JY; Leone, M; Papazian, L; Asehnoune, K; Maziers, N; Azoulay, E; Pradel, G; Jung, B; Jaber, S
American Journal of Respiratory and Critical Care Medicine, 187(8): 832-839.
10.1164/rccm.201210-1851OC
CrossRef
Anesthesiology
Unanticipated Difficult Intubation at Induction Secondary to Acute Enlargement of a Venocapillary Malformation of the Face
Rajan, GR; Boutwell, K
Anesthesiology, 107(1): 165-166.
10.1097/01.anes.0000268274.15202.90
PDF (196) | CrossRef
Anesthesiology
High Body Mass Index Is a Weak Predictor for Difficult and Failed Tracheal Intubation: A Cohort Study of 91,332 Consecutive Patients Scheduled for Direct Laryngoscopy Registered in the Danish Anesthesia Database
Lundstrøm, LH; Møller, AM; Rosenstock, C; Astrup, G; Wetterslev, J
Anesthesiology, 110(2): 266-274.
10.1097/ALN.0b013e318194cac8
PDF (503) | CrossRef
Anesthesiology
Dynamic Interaction of Craniofacial Structures during Head Positioning and Direct Laryngoscopy in Anesthetized Patients with and without Difficult Laryngoscopy
Kitamura, Y; Isono, S; Suzuki, N; Sato, Y; Nishino, T
Anesthesiology, 107(6): 875-883.
10.1097/01.anes.0000291439.52483.6a
PDF (625) | CrossRef
Anesthesiology
Use of the Pentax-AWS® in 293 Patients with Difficult Airways
Asai, T; Liu, EH; Matsumoto, S; Hirabayashi, Y; Seo, N; Suzuki, A; Toi, T; Yasumoto, K; Okuda, Y
Anesthesiology, 110(4): 898-904.
10.1097/ALN.0b013e31819c45e5
PDF (363) | CrossRef
Anesthesiology
Incidence and Predictors of Difficult and Impossible Mask Ventilation
Kheterpal, S; Han, R; Tremper, KK; Shanks, A; Tait, AR; O’Reilly, M; Ludwig, TA
Anesthesiology, 105(5): 885-891.

PDF (371)
Anesthesiology
Submandible Angle in Nonobese Patients with Difficult Tracheal Intubation
Nishino, T; Suzuki, N; Isono, S; Ishikawa, T; Kitamura, Y; Takai, Y
Anesthesiology, 106(5): 916-923.
10.1097/01.anes.0000265150.71319.91
PDF (1832) | CrossRef
Anesthesiology
Predicting Difficult Intubation
Rincón, DA
Anesthesiology, 104(3): 618.

PDF (381)
Anesthesiology
Predicting Difficult Intubation
Shiga, T; Wajima, Z; Inoue, T
Anesthesiology, 104(3): 618-619.

PDF (381)
Anesthesiology
Obesity and Difficult Intubation: Where Is the Evidence?
Collins, JS; Lemmens, HJ; Brodsky, JB
Anesthesiology, 104(3): 617.

PDF (381)
Anesthesiology
Learning Curves for Bag-and-mask Ventilation and Orotracheal Intubation: An Application of the Cumulative Sum Method
Komatsu, R; Kasuya, Y; Yogo, H; Sessler, D; Mascha, E; Yang, D; Ozaki, M
Anesthesiology, 112(6): 1525-1531.
10.1097/ALN.0b013e3181d96779
PDF (775) | CrossRef
Anesthesiology
Mallampati Classification, an Estimate of Upper Airway Anatomical Balance, Can Change Rapidly during Labor
Isono, S
Anesthesiology, 108(3): 347-349.
10.1097/ALN.0b013e318164cb0b
PDF (312) | CrossRef
Anesthesiology
Prediction and Outcomes of Impossible Mask Ventilation: A Review of 50,000 Anesthetics
Kheterpal, S; Martin, L; Shanks, AM; Tremper, KK
Anesthesiology, 110(4): 891-897.
10.1097/ALN.0b013e31819b5b87
PDF (316) | CrossRef
Anesthesiology
Predicting Trouble in Airway Management
Yentis, SM
Anesthesiology, 105(5): 871-872.

PDF (258)
European Journal of Anaesthesiology (EJA)
Videolaryngoscopy in the management of the difficult airway: a comparison with the Macintosh blade
Stroumpoulis, K; Pagoulatou, A; Violari, M; Ikonomou, I; Kalantzi, N; Kastrinaki, K; Xanthos, T; Michaloliakou, C
European Journal of Anaesthesiology (EJA), 26(3): 218-222.
10.1097/EJA.0b013e32831c84d1
PDF (542) | CrossRef
European Journal of Anaesthesiology (EJA)
Prediction of difficult tracheal intubation in Turkish patients: a multi‐center methodological study
Yildiz, TS; Korkmaz, F; Solak, M; Toker, K; Erciyes, N; Bayrak, F; Ganidagli, S; Tekin, M; Kzlkaya, M; Karsl, B; Turan, A; Ozcan, U
European Journal of Anaesthesiology (EJA), 24(12): 1034-1040.
10.1017/S026502150700052X
PDF (89) | CrossRef
European Journal of Anaesthesiology (EJA)
What is the optimal remifentanil dosage for providing excellent intubating conditions when coadministered with thiopental? A prospective randomized dose–response study
Bouvet, L; Stoian, A; Rousson, D; Allaouchiche, B; Chassard, D; Boselli, E
European Journal of Anaesthesiology (EJA), 27(7): 653-659.
10.1097/EJA.0b013e3283396341
PDF (291) | CrossRef
European Journal of Anaesthesiology (EJA)
The supraglottic airway I-gel in comparison with ProSeal laryngeal mask airway and classic laryngeal mask airway in anaesthetized patients
Shin, W; Cheong, Y; Yang, H; Nishiyama, T
European Journal of Anaesthesiology (EJA), 27(7): 598-601.
10.1097/EJA.0b013e3283340a81
PDF (155) | CrossRef
Back to Top | Article Outline

© 2005 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.
Login

Article Tools

Images

Share