Skip Navigation LinksHome > July 2004 - Volume 101 - Issue 1 > Metabolic Acidosis Associated with Propofol in the Absence o...
Anesthesiology:
Case Reports

Metabolic Acidosis Associated with Propofol in the Absence of Other Causative Factors

Burow, Bethanie K. M.D.*; Johnson, Michael E. M.D., Ph.D.†; Packer, Douglas L. M.D.‡

Free Access
Article Outline
Collapse Box

Author Information

PROPOFOL is commonly used for intensive care unit sedation and prolonged procedures in the adult population where both deep sedation and quick emergence are required. Several recent reports have described a “propofol infusion syndrome,” occurring in both pediatric1–7 and adult2,8–10 patients receiving prolonged high-dose infusions of propofol (> 75 μg · kg−1 · min−1 × > 24 h). The syndrome is characterized as a severe metabolic acidosis, sometimes associated with myocardial dysfunction, rhabdomyolysis, or death. Although some reports have documented high anion gap, lactic acidosis, others have documented only a metabolic acidosis without further characterization. All cases of propofol infusion syndrome reported thus far have occurred in critically ill patients receiving multiple other drugs, creating some controversy as to whether propofol alone was its cause.11–13 We now report a case of metabolic acidosis, without ventilatory depression or hypoxia, in an otherwise healthy patient receiving propofol as the sole anesthetic agent during an ablation for atrial fibrillation. Approval for this case review was obtained from the institutional review board of the Mayo Clinic College of Medicine.
Back to Top | Article Outline

Case Report

A 31-yr-old woman (weight, 99.2 kg; height, 162 cm) with chronic atrial fibrillation was scheduled to undergo radiofrequency ablation for pulmonary vein isolation. She had a history of atrial fibrillation since the age of 22 yr and was minimally symptomatic, with no evidence of rate-related ventricular dysfunction or thromboembolic events. Except for occasional gastric reflux, she was otherwise healthy. She had reported “waking up early” during a previous anesthetic. Echocardiography showed normal ventricular function with a left ventricular ejection fraction of 55% and mild atrial enlargement. Medications were limited to 50 mg atenolol daily (stopped 4 days before ablation), 325 mg aspirin daily, and oral contraceptives. Preoperative laboratory results were unremarkable, including 11.5 g/dl hemoglobin, 0.9 mg/dl creatinine, 138 mEq/l Na+, and 4.9 mEq/l K+.
The initial anesthetic plan was to use propofol as the sole sedative, based on its rapid metabolism and the clinical impression that propofol suppresses arrhythmogenic foci during radiofrequency ablation to a lesser extent than other available anesthetic agents. Monitoring included electrocardiography, pulse oximetry, continuous carbon dioxide monitoring of gas sampled at the nares, a femoral arterial catheter, and a urinary catheter. Because of the potential for respiratory depression with prolonged deep sedation in a nonintubated patient, arterial blood gas analyses were obtained intermittently during the procedure.
Sedation was induced with 25 μg · kg−1 · min−1 propofol with supplemental oxygen by facemask at 4 l/min. The Diprivan® Injectable Emulsion formulation of propofol (AstraZeneca, Wilmington, DE) was used throughout, containing 10 mg/ml propofol and 0.005% disodium edetate. The exact vial sizes used were not recorded on the written anesthesia record. Based on our practice patterns at that time, the propofol infusion was almost certainly administered directly from a 100-ml infusion vial sterilely spiked with a solution administration set leading to an infusion pump. The source of supplemental boluses was not specified on the written record but would have been either from the 100-ml infusion vial already in use or from a 20-ml glass vial opened separately. Our practice is to discard unused propofol at the end of each case, so that vials would have been opened fresh for this case. The case reported was the first case of the day, and vials would have been open no longer than 1 h before the case. Lot numbers and expiration dates for the vials of propofol used could not be identified on retrospective inspection.
Fig. 1
Fig. 1
Image Tools
The rate of propofol infusion was quickly increased to assist with patient immobility and ranged from 50 to 125 μg · kg−1 · min−1 throughout the procedure, together with intermittent boluses. The course of propofol therapy and arterial blood gases during the procedure is shown in figure 1. The average rate at which propofol was administered was 83 μg · kg−1 · min−1, over a period of 395 min. An acidosis progressively developed, which was entirely metabolic. Pulse oximetry documented oxygen saturation (Spo2) greater than 95% at all times, and arterial oxygen tension (Pao2) and arterial carbon dioxide tension (Paco2) showed no evidence of hypoxia or respiratory depression on any arterial blood gas. There was no prolonged hypotension, and the average urine output was 250 ml/h throughout the procedure. Blood loss was minimal. The only other drug therapies used while propofol was administered were heparin, cefazolin, and 2 mg midazolam given as 1 mg at 51 min and 2 × 0.5 mg at 180 min after the start of anesthesia. Na+ and K+ at 51 and 194 min were 142 and 4.2 mEq/l and 142 and 4.0 mEq/l, respectively.
At 395 min, the pH was 7.30, and base excess was −8. Because of patient restlessness and movement despite heavy sedation, intermittent airway obstruction requiring manual positioning to correct, and concern about an evolving metabolic acidosis with high-dose propofol, the patient was intubated and mechanically ventilated. The propofol infusion was discontinued, and no further propofol boluses were given. Total intravenous fluid to this point was between 2 and 3 l saline, 0.9%. A fentanyl infusion at 17–34 ng · kg−1 · min−1 with 75% N2O was begun and continued for the rest of the procedure. Sodium bicarbonate 15 mEq was given at 475 min, but the largest change in pH and base excess toward normal occurred between discontinuation of propofol at 395 min and the blood gas sampled at 433 min. By 560 min, the metabolic acidosis had partially resolved. At the end of the procedure at 720 min, the trachea was extubated without complications. Total intravenous fluid during the procedure was 5.85 l saline, 0.9%. No further arterial blood gas analyses were obtained on the day of the procedure. After the procedure, the patient had normal physical examination results and no complaints. Laboratory values obtained 2–4 days after the procedure were unremarkable: Na+, 137–139 mEq/l; K+, 3.5–3.9 mEq/l; Cl 103–106 mEq/l; venous HCO3 25–26 mEq/l; anion gap, 8.
Back to Top | Article Outline

Discussion

We report the development of significant, reversible, metabolic acidosis without ventilatory depression or hypoxia in a healthy patient receiving high-dose propofol and no other drugs likely to cause metabolic acidosis. The mechanism for this mild probable propofol infusion syndrome remains unclear. There was no evidence of renal failure causing decreased excretion of endogenous acids or increased loss of bicarbonate. Moreover, venous bicarbonate, creatinine, and anion gap values obtained after the procedure were normal, showing the absence of underlying chronic renal disease.
Increased lactic acid production caused by low cardiac output or a regional steal syndrome must be considered because propofol is both a cardiac depressant and vasoactive,14 and cardiac failure has been reported with the propofol infusion syndrome.1,2 However, cardiac failure with propofol is usually a late, fatal development after metabolic acidosis, rather than an early cause of metabolic acidosis. This patient’s hemodynamics, urine output, and stable renal status argue against cardiovascular failure as the proximate cause of her metabolic acidosis.
Another potential cause of this patient’s metabolic acidosis is impaired hepatic lactate metabolism. In several cases of propofol infusion syndrome, the development of a fatty or enlarged liver has been reported, and a case of isolated severe hepatotoxicity associated with propofol has also been reported.15 The patient reported here did not have liver function laboratory tests, but she had no clinical evidence of hepatic disease before or after the procedure.
There is both in vitro16 and clinical7 evidence that high doses of propofol can inhibit mitochondrial respiration, which could cause metabolic acidosis. The glucuronide and sulfate products of phase II propofol metabolism are unlikely to be toxic, but the intermediate dihydroxylated products are poorly characterized and potentially interconvertible to toxic quinones. Propofol quinone has been synthesized, and preliminary evidence has been presented of its mitochondrial toxicity.17 Both a direct and a metabolite mitochondrial toxicity of propofol would be consistent with the idiosyncratic appearance of the propofol infusion syndrome, requiring both a sustained, high-dose infusion and as yet undetermined genetic variants of propofol clearance and metabolism.
Sepsis can lead to metabolic acidosis and could occur with contaminated propofol because its lipid emulsion is a good culture medium.18 Here, the lack of fever and sustained hypotension and the uneventful postoperative recovery argue against sepsis in this patient. No exogenous acid load was administered to this patient; she received only the Diprivan® formulation of propofol (pH 7.5–8.0), rather than a generic formulation (pH 4.5–6.4; Baxter Healthcare Corporation, New Providence, NJ).
Rapid administration of large volumes of 0.9% intravenous saline can cause dilutional acidosis.19,20 Unfortunately, the concentration of serum chloride, which would have clarified the contribution of saline administration to this patient’s acidosis, was not determined during the acidosis. However, comparison to published studies of dilutional acidosis suggests that 0.9% saline is unlikely to account for all of this patient’s acidosis. In adult gynecologic surgery patients receiving 6 l saline, 0.9%, over 2 h, base excess decreased to −6.7 mm by 2 h.20 Such dilutional changes require rapid administration of volumes beyond the ability of native homeostatic mechanisms to compensate.19 At the time of intubation, our patient had received at most 3 l saline, 0.9%, over 6.5 h, with a base excess of −8. Hence, compared with that study,20 our patient had a more negative base excess despite receiving half the saline volume over more than triple the time period, with more time for urinary response to a putative dilutional acidosis. Furthermore, her acidosis improved after the propofol was stopped, although she received a similar volume (at least 2.85 l) of 0.9% saline over the final 5.5 h of the anesthetic.
In conclusion, the case reported here is significant because it is the first documented example of propofol potentially causing metabolic acidosis in the absence of any other drug likely to cause acidosis and without any other reasonable causative factors. It suggests that propofol infusion syndrome is in fact due to propofol or a propofol metabolite, is reversible in its early stages, and is consistent with previous cautions to avoid high-dose, prolonged infusions of propofol.1,2 It also illustrates the utility of monitoring arterial blood gases in cases where the advantages of propofol infusion greater than 75 μg · kg−1 · min−1 for more than a few hours seem to outweigh its risks.
Back to Top | Article Outline

References

1. Bray RJ: Propofol infusion syndrome in children. Paediatr Anaesth 1998; 8:491–9

2. Cremer OL, Moons KG, Bouman EA, Kruijswijk JE, de Smet AM, Kalkman CJ: Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 2001; 357:117–8

3. Cray SH, Robinson BH, Cox PN: Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit Care Med 1998; 26:2087–92

4. Hanna JP, Ramundo ML: Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology 1998; 50:301–3

5. Hatch DJ: Propofol-infusion syndrome in children. Lancet 1999; 353:1117–8

6. Kelly DF: Propofol-infusion syndrome. J Neurosurg 2001; 95:925–6

7. Wolf A, Weir P, Segar P, Stone J, Shield J: Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 2001; 357:606–7

8. Perrier ND, Baerga-Varela Y, Murray MJ: Death related to propofol use in an adult patient. Crit Care Med 2000; 28:3071–4

9. Stelow EB: Propofol-associated rhabdomyolysis with cardiac involvement in adults: Chemical and anatomic findings. Clin Chem 2000; 46:577–81

10. Badr AE, Mychaskiw G, II, Eichhorn JH: Metabolic acidosis associated with a new formulation of propofol. Anesthesiology 2001; 94:536–8

11. Nimmo GR, Mackenzie SJ, Grant IS: Haemodynamic and oxygen transport effects of propofol infusion in critically ill adults. Anaesthesia 1994; 49:485–9

12. Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, Jacobson J, Levy ML, Croce MA, Maniker AH, Fulda GJ, Lovett JV, Mohan O, Narayan RK: Propofol in the treatment of moderate and severe head injury: A randomized, prospective double-blinded pilot trial. J Neurosurg 1999; 90:1042–52

13. Reed MD, Blumer JL: Propofol bashing: The time to stop is now! Crit Care Med 1996; 24:175–6

14. Ririe DG, Lundell JC, Neville MJ: Direct effects of propofol on myocardial and vascular tissue from mature and immature rats. J Cardiothorac Vasc Anesth 2001; 15:745–9

15. Anand K, Ramsay MA, Crippin JS: Hepatocellular injury following the administration of propofol. Anesthesiology 2001; 95:1523–4

16. Schenkman KA, Yan S: Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 2000; 28:172–7

17. Johnson ME, Fauq AH, Uhl CB: Effect of propofol and propofol quinone on hydroxyl radical generation (abstract). Free Radic Biol Med 2002; 33(suppl 1):S202

18. Bennett SN, McNeil MM, Bland LA, Arduino MJ, Villarino ME, Perrotta DM, Burwen DR, Welbel SF, Pegues DA, Stroud L, Zeitz PS, Jarvis WR: Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995; 333:147–54

19. Prough DS, White RT: Acidosis associated with perioperative saline administration: Dilution or delusion? Anesthesiology 2000; 93:1167–9

20. Scheingraber S, Rehm M, Sehmisch C, Finsterer U: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999; 90:1265–70

Cited By:

This article has been cited 31 time(s).

Pharmacotherapy
Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care
Riker, RR; Fraser, GL
Pharmacotherapy, 25(5): 8S-18S.

American Journal of Health-System Pharmacy
Propofol infusion syndrome: Case report and literature review
Orsini, J; Nadkarni, A; Chen, J; Cohen, N
American Journal of Health-System Pharmacy, 66(): 908-915.
10.2146/ajhp070605
CrossRef
Anesthesia and Analgesia
Propofol infusion syndrome associated with short-term large-dose infusion during surgical anesthesia in an adult
Liolios, A; Guerit, JM; Scholtes, JL; Raftopoulos, C; Hantson, P
Anesthesia and Analgesia, 100(6): 1804-1806.
10.1213/01.ANE.0000153017.93666.BF
CrossRef
Anesthesia and Analgesia
Propofol infusion syndrome - A fatal case at a low infusion rate
Merz, TM; Regli, B; Rothen, HU; Felleiter, P
Anesthesia and Analgesia, 103(4): 1050.
10.1213/01.ane.0000239080.82501.c7
CrossRef
Epilepsia
Propofol-associated fatal myocardial failure and rhabdomyolysis in an adult with status epilepticus
Zarovnaya, EL; Jobst, BC; Harris, BT
Epilepsia, 48(5): 1002-1006.
10.1111/j.1528-1167.2007.01042.x
CrossRef
Drug Safety
Propofol infusion syndrome - An overview of a perplexing disease
Fodale, V; La Monaca, E
Drug Safety, 31(4): 293-303.

Revista Medica De Chile
Severe lactic acidosis caused by propofol infusion. Report of one case
Romero, C; Monica, MR; Donaire, L; Llanos, O; Cornejo, R; Galvez, R; Castro, J
Revista Medica De Chile, 136(1): 88-92.

Pediatric Anesthesia
Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents
Ngwenyama, NE; Anderson, J; Hoernschemeyer, DG; Tobias, JD
Pediatric Anesthesia, 18(): 1190-1195.
10.1111/j.1460-9592.2008.02787.x
CrossRef
Anaesthesist
Propofol infusion syndrome
Motsch, J; Roggenbach, J
Anaesthesist, 53(): 1009-+.
10.1007/s00101-004-0756-3
CrossRef
Journal of Anesthesia
Hyperkalemia during surgery: is it an early warning of propofol infusion syndrome?
Mali, AR; Patil, VP; Pramesh, CS; Mistry, RC
Journal of Anesthesia, 23(3): 421-423.
10.1007/s00540-009-0745-4
CrossRef
Anaesthesia and Intensive Care
Short-term low-dose propofol anaesthesia associated with severe metabolic acidosis
Chukwuemeka, A; Ko, R; Ralph-Edwards, A
Anaesthesia and Intensive Care, 34(5): 651-655.

Pharmacotherapy
Propofol-related infusion syndrome in intensive care patients
Corbett, SM; Montoya, ID; Moore, FA
Pharmacotherapy, 28(2): 250-258.

Neurocritical Care
Vasopressors and Propofol Infusion Syndrome in Severe Head Trauma
Smith, H; Sinson, G; Varelas, P
Neurocritical Care, 10(2): 166-172.
10.1007/s12028-008-9163-y
CrossRef
Minerva Anestesiologica
Propofol infusion syndrome: update of clinical manifestation and pathophysiology
Fudickar, A; Bein, B
Minerva Anestesiologica, 75(5): 339-344.

Anesthesia and Analgesia
Prolonged Propofol Anesthesia Is Not Associated with an Increase in Blood Lactate
Rozet, I; Tontisirin, N; Vavilala, MS; Treggiari, MM; Lee, LA; Lam, AM
Anesthesia and Analgesia, 109(4): 1105-1110.
10.1213/ANE.0b013e3181b5a220
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Propofol infusion syndrome
Laquay, N; Prieur, S; Greff, B; Meyer, P; Orliaguet, G
Annales Francaises D Anesthesie Et De Reanimation, 29(5): 377-386.
10.1016/j.annfar.2010.02.030
CrossRef
Annales Francaises D Anesthesie Et De Reanimation
Lactic acidosis associated with propofol during general anaesthesia for neurosurgery
Bordes, J; Meaudre, E; Asencio, Y; Montcriol, A; Kaiser, E
Annales Francaises D Anesthesie Et De Reanimation, 27(3): 261-264.
10.1016/j.annfar.2008.01.022
CrossRef
Anaesthesia
Propofol infusion syndrome
Kam, PCA; Cardone, D
Anaesthesia, 62(7): 690-701.
10.1111/j.1365-2044.2007.05055.x
CrossRef
Critical Care
Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study
Roberts, RJ; Barletta, JF; Fong, JJ; Schumaker, G; Kuper, PJ; Papadopoulos, S; Yogaratnam, D; Kendall, E; Xamplas, R; Gerlach, AT; Szumita, PM; Anger, KE; Arpino, PA; Voils, SA; Grgurich, P; Ruthazer, R; Devlin, JW
Critical Care, 13(5): -.
ARTN R169
CrossRef
Surgical Clinics of North America
Anesthetic choices in surgery
Hassan, ZU; Fahy, BG
Surgical Clinics of North America, 85(6): 1075-+.
10.1016/j.suc.2005.09.017
CrossRef
Arquivo Brasileiro De Medicina Veterinaria E Zootecnia
Synchronized intermittent mandatory ventilation versus volume assured pressure support ventilation in rabbits induced to acute hemorrhage
Batista, PACS; Nunes, N; Camacho, AA; Borges, PA; Moro, JV; Lopes, PCF; Burger, CP; Gava, FN
Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 64(6): 1555-1562.

Journal of Neurosurgical Anesthesiology
Prolonged Propofol Infusions in Pregnant Neurosurgical Patients
Hilton, G; Andrzejowski, JC
Journal of Neurosurgical Anesthesiology, 19(1): 67-68.
10.1097/ANA.0b013e31802b31c8
PDF (67) | CrossRef
European Journal of Anaesthesiology (EJA)
Severe myalgia associated with propofol sedation
Lavi, R; Segal, D; Lavi, S
European Journal of Anaesthesiology (EJA), 24(1): 92-93.

PDF (56)
Critical Care Medicine
Survival of propofol infusion syndrome in a head-injured patient
Corbett, SM; Moore, J; Rebuck, JA; Rogers, FB; Greene, CM
Critical Care Medicine, 34(9): 2479-2483.
10.1097/01.CCM.0000230238.72846.B3
PDF (222) | CrossRef
Anesthesiology
Incidence of Propofol Infusion Syndrome during Noninvasive Radiofrequency Ablation for Atrial Flutter or Fibrillation
Cravens, GT; Packer, DL; Johnson, ME
Anesthesiology, 106(6): 1134-1138.
10.1097/01.anes.0000265421.40477.a3
PDF (264) | CrossRef
Anesthesiology
Metabolic Acidosis due to Propofol Infusion
Johnson, ME
Anesthesiology, 102(3): 698.

PDF (1437)
Anesthesiology
Reports of Death with Use of Propofol (Diprivan) for Nonprocedural (Long-term) Sedation and Literature Review
Wysowski, DK; Pollock, ML
Anesthesiology, 105(5): 1047-1051.

PDF (174)
Critical Care Medicine
Predictors of mortality in patients with suspected propofol infusion syndrome
Fong, JJ; Sylvia, L; Ruthazer, R; Schumaker, G; Kcomt, M; Devlin, JW
Critical Care Medicine, 36(8): 2281-2287.
10.1097/CCM.0b013e318180c1eb
PDF (394) | CrossRef
Southern Medical Journal
New Anticonvulsants—New Adverse Effects
Tebb, Z; Tobias, JD
Southern Medical Journal, 99(4): 375-379.
10.1097/01.smj.0000209220.40105.0c
PDF (63) | CrossRef
Anesthesiology
Propofol Infusion Syndrome or Probable Overinterpretation Syndrome?
Rozet, I; Lam, AM
Anesthesiology, 108(2): 330.
10.1097/01.anes.0000300041.04742.66
PDF (402) | CrossRef
Anesthesiology
Metabolic Acidosis due to Propofol Infusion
Farag, E; DeBoer, G; Cohen, BH; Niezgoda, J
Anesthesiology, 102(3): 697-698.

PDF (1437)
Back to Top | Article Outline

© 2004 American Society of Anesthesiologists, Inc.

Publication of an advertisement in Anesthesiology Online does not constitute endorsement by the American Society of Anesthesiologists, Inc. or Lippincott Williams & Wilkins, Inc. of the product or service being advertised.
Login

Article Tools

Images

Share